
1. 引言
最近在将一个算法由matlab转成python,初学python,很多地方还不熟悉,总体感觉就是上手容易,实际上很优雅地用python还是蛮难的。目前为止,觉得就算法仿真研究而言,还是matlab用得特别舒服,可能是比较熟悉的缘故吧。matlab直接集成了很多算法工具箱,函数查询、调用、变量查询等非常方便,或许以后用久了python也会感觉很好用。与python相比,最喜欢的莫过于可以直接选中某段代码执行了,操作方便,python也可以实现,就是感觉不是很方便。
言归正传,做算法要用到很多的向量和矩阵运算操作,这些嘛在matlab里面已经很熟悉了,但用python的时候需要用一个查一个,挺烦的,所以在此稍作总结,后续使用过程中会根据使用体验更新。
python的矩阵运算主要依赖numpy包,scipy包以numpy为基础,大大扩展了后者的运算能力。
2. 创建一般的多维数组
import numpy as np
a = np.array([1,2,3], dtype=int) # 创建1*3维数组 array([1,2,3])
type(a) # numpy.ndarray类型
a.shape # 维数信息(3L,)
a.dtype.name # 'int32'
a.size # 元素个数:3
a.itemsize #每个元素所占用的字节数目:4
b=np.array([[1,2,3],[4,5,6]],dtype=int) # 创建2*3维数组 array([[1,2,3],[4,5,6]])
b.shape # 维数信息(2L,3L)
b.size # 元素个数:6
b.itemsize # 每个元素所占用的字节数目:4
c=np.array([[1,2,3],[4,5,6]],dtype='int16') # 创建2*3维数组 array([[1,2,3],[4,5,6]],dtype=int16)
c.shape # 维数信息(2L,3L)
c.size # 元素个数:6
c.itemsize # 每个元素所占用的字节数目:2
c.ndim # 维数
d=np.array([[1,2,3],[4,5,6]],dtype=complex) # 复数二维数组
d.itemsize # 每个元素所占用的字节数目:16
d.dtype.name # 元素类型:'complex128'
3. 创建特殊类型的多维数组
a1 = np.zeros((3,4)) # 创建3*4全零二维数组
输出:
array([[ 0., 0., 0., 0.],
[ 0., 0., 0., 0.],
[ 0., 0., 0., 0.]])
a1.dtype.name # 元素类型:'float64'
a1.size # 元素个数:12
a1.itemsize # 每个元素所占用的字节个数:8
a2 = np.ones((2,3,4), dtype=np.int16) # 创建2*3*4全1三维数组
a2 = np.ones((2,3,4), dtype='int16') # 创建2*3*4全1三维数组
输出:
array([[[1, 1, 1, 1],
[1, 1, 1, 1],
[1, 1, 1, 1]],
[[1, 1, 1, 1],
[1, 1, 1, 1],
[1, 1, 1, 1]]], dtype=int16)
a3 = np.empty((2,3)) # 创建2*3的未初始化二维数组
输出:(may vary)
array([[ 1., 2., 3.],
[ 4., 5., 6.]])
a4 = np.arange(10,30,5) # 初始值10,结束值:30(不包含),步长:5
输出:array([10, 15, 20, 25])
a5 = np.arange(0,2,0.3) # 初始值0,结束值:2(不包含),步长:0.2
输出:array([ 0. , 0.3, 0.6, 0.9, 1.2, 1.5, 1.8])
from numpy import pi
np.linspace(0, 2, 9) # 初始值0,结束值:2(包含),元素个数:9
输出:
array([ 0. , 0.25, 0.5 , 0.75, 1. , 1.25, 1.5 , 1.75, 2. ])
x = np.linspace(0, 2*pi, 9)
输出:
array([ 0. , 0.78539816, 1.57079633, 2.35619449, 3.14159265,
3.92699082, 4.71238898, 5.49778714, 6.28318531])
a = np.arange(6)
输出:
array([0, 1, 2, 3, 4, 5])
b = np.arange(12).reshape(4,3)
输出:
array([[ 0, 1, 2],
[ 3, 4, 5],
[ 6, 7, 8],
[ 9, 10, 11]])
c = np.arange(24).reshape(2,3,4)
输出:
array([[[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]],
[[12, 13, 14, 15],
[16, 17, 18, 19],
[20, 21, 22, 23]]])
使用numpy.set_printoptions可以设置numpy变量的打印格式
在ipython环境下,使用help(numpy.set_printoptions)查询使用帮助和示例
4. 多维数组的基本操作
加法和减法操作要求操作双方的维数信息一致,均为M*N为数组方可正确执行操作。
a = np.arange(4)
输出:
array([0, 1, 2, 3])
b = a**2
输出:
array([0, 1, 4, 9])
c = 10*np.sin(a)
输出:
array([ 0. , 8.41470985, 9.09297427, 1.41120008])
n < 35
输出:
array([ True, True, True, True], dtype=bool)
A = np.array([[1,1],[0,1]])
B = np.array([[2,0],[3,4]])
C = A * B # 元素点乘
输出:
array([[2, 0],
[0, 4]])
D = A.dot(B) # 矩阵乘法
输出:
array([[5, 4],
[3, 4]])
E = np.dot(A,B) # 矩阵乘法
输出:
array([[5, 4],
[3, 4]])
多维数组操作过程中的类型转换
When operating with arrays of different types, the type of the resulting array corresponds to the more general or precise one (a behavior known as upcasting)
即操作不同类型的多维数组时,结果自动转换为精度更高类型的数组,即upcasting
a = np.ones((2,3),dtype=int) # int32
b = np.random.random((2,3)) # float64
b += a # 正确
a += b # 错误
a = np.ones(3,dtype=np.int32)
b = np.linspace(0,pi,3)
c = a + b
d = np.exp(c*1j)
输出:
array([ 0.54030231+0.84147098j, -0.84147098+0.54030231j,
-0.54030231-0.84147098j])
d.dtype.name
输出:
'complex128'
多维数组的一元操作,如求和、求最小值、最大值等
a = np.random.random((2,3))
a.sum()
a.min()
a.max()
b = np.arange(12).reshape(3,4)
输出:
array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])
b.sum(axis=0) # 按列求和
输出:
array([12, 15, 18, 21])
b.sum(axis=1) # 按行求和
输出:
array([ 6, 22, 38])
b.cumsum(axis=0) # 按列进行元素累加
输出:
array([[ 0, 1, 2, 3],
[ 4, 6, 8, 10],
[12, 15, 18, 21]])
b.cumsum(axis=1) # 按行进行元素累加
输出:
array([[ 0, 1, 3, 6],
[ 4, 9, 15, 22],
[ 8, 17, 27, 38]])
universal functions
B = np.arange(3)
np.exp(B)
np.sqrt(B)
C = np.array([2.,-1.,4.])
np.add(B,C)
其他的ufunc函数包括:
all, any, apply_along_axis, argmax, argmin, argsort, average, bincount, ceil, clip, conj, corrcoef, cov, cross, cumprod, cumsum, diff, dot, floor,inner, lexsort, max, maximum, mean, median, min, minimum, nonzero, outer, prod, re, round, sort, std, sum, trace, transpose, var,vdot, vectorize, where
5. 数组索引、切片和迭代
a = np.arange(10)**3
a[2]
a[2:5]
a[::-1] # 逆序输出
for i in a:
print (i**(1/3.))
def f(x,y):
return 10*x+y
b = np.fromfunction(f,(5,4),dtype=int)
b[2,3]
b[0:5,1]
b[:,1]
b[1:3,:]
b[-1]
c = np.array([[[0,1,2],[10,11,12]],[[100,101,102],[110,111,112]]])
输出:
array([[[ 0, 1, 2],
[ 10, 11, 12]],
[[100, 101, 102],
[110, 111, 112]]])
c.shape
输出:
(2L, 2L, 3L)
c[0,...]
c[0,:,:]
输出:
array([[ 0, 1, 2],
[10, 11, 12]])
c[:,:,2]
c[...,2]
输出:
array([[ 2, 12],
[102, 112]])
for row in c:
print(row)
for element in c.flat:
print(element)
a = np.floor(10*np.random.random((3,4)))
输出:
array([[ 3., 9., 8., 4.],
[ 2., 1., 4., 6.],
[ 0., 6., 0., 2.]])
a.ravel()
输出:
array([ 3., 9., 8., ..., 6., 0., 2.])
a.reshape(6,2)
输出:
array([[ 3., 9.],
[ 8., 4.],
[ 2., 1.],
[ 4., 6.],
[ 0., 6.],
[ 0., 2.]])
a.T
输出:
array([[ 3., 2., 0.],
[ 9., 1., 6.],
[ 8., 4., 0.],
[ 4., 6., 2.]])
a.T.shape
输出:
(4L, 3L)
a.resize((2,6))
输出:
array([[ 3., 9., 8., 4., 2., 1.],
[ 4., 6., 0., 6., 0., 2.]])
a.shape
输出:
(2L, 6L)
a.reshape(3,-1)
输出:
array([[ 3., 9., 8., 4.],
[ 2., 1., 4., 6.],
[ 0., 6., 0., 2.]])
详查以下函数:
ndarray.shape, reshape, resize, ravel
6. 组合不同的多维数组
a = np.floor(10*np.random.random((2,2)))
输出:
array([[ 5., 2.],
[ 6., 2.]])
b = np.floor(10*np.random.random((2,2)))
输出:
array([[ 0., 2.],
[ 4., 1.]])
np.vstack((a,b))
输出:
array([[ 5., 2.],
[ 6., 2.],
[ 0., 2.],
[ 4., 1.]])
np.hstack((a,b))
输出:
array([[ 5., 2., 0., 2.],
[ 6., 2., 4., 1.]])
from numpy import newaxis
np.column_stack((a,b))
输出:
array([[ 5., 2., 0., 2.],
[ 6., 2., 4., 1.]])
a = np.array([4.,2.])
b = np.array([2.,8.])
a[:,newaxis]
输出:
array([[ 4.],
[ 2.]])
b[:,newaxis]
输出:
array([[ 2.],
[ 8.]])
np.column_stack((a[:,newaxis],b[:,newaxis]))
输出:
array([[ 4., 2.],
[ 2., 8.]])
np.vstack((a[:,newaxis],b[:,newaxis]))
输出:
array([[ 4.],
[ 2.],
[ 2.],
[ 8.]])
np.r_[1:4,0,4]
输出:
array([1, 2, 3, 0, 4])
np.c_[np.array([[1,2,3]]),0,0,0,np.array([[4,5,6]])]
输出:
array([[1, 2, 3, 0, 0, 0, 4, 5, 6]])
详细使用请查询以下函数:
hstack, vstack, column_stack, concatenate, c_, r_
7. 将较大的多维数组分割成较小的多维数组
a = np.floor(10*np.random.random((2,12)))
输出:
array([[ 9., 7., 9., ..., 3., 2., 4.],
[ 5., 3., 3., ..., 9., 7., 7.]])
np.hsplit(a,3)
输出:
[array([[ 9., 7., 9., 6.],
[ 5., 3., 3., 1.]]), array([[ 7., 2., 1., 6.],
[ 7., 5., 0., 2.]]), array([[ 9., 3., 2., 4.],
[ 3., 9., 7., 7.]])]
np.hsplit(a,(3,4))
输出:
[array([[ 9., 7., 9.],
[ 5., 3., 3.]]), array([[ 6.],
[ 1.]]), array([[ 7., 2., 1., ..., 3., 2., 4.],
[ 7., 5., 0., ..., 9., 7., 7.]])]
实现类似功能的函数包括:
hsplit,vsplit,array_split
8. 多维数组的复制操作
a = np.arange(12)
输出:
array([ 0, 1, 2, ..., 9, 10, 11])
not copy at all
b = a
b is a # True
b.shape = 3,4
a.shape # (3L,4L)
def f(x) # Python passes mutable objects as references, so function calls make no copy.
print(id(x)) # id是python对象的唯一标识符
id(a) # 111833936L
id(b) # 111833936L
f(a) # 111833936L
浅复制
c = a.view()
c is a # False
c.base is a # True
c.flags.owndata # False
c.shape = 2,6
a.shape # (3L,4L)
c[0,4] = 1234
print(a)
输出:
array([[ 0, 1, 2, 3],
[1234, 5, 6, 7],
[ 8, 9, 10, 11]])
s = a[:,1:3]
s[:] = 10
print(a)
输出:
array([[ 0, 10, 10, 3],
[1234, 10, 10, 7],
[ 8, 10, 10, 11]])
深复制
d = a.copy()
d is a # False
d.base is a # False
d[0,0] = 9999
print(a)
输出:
array([[ 0, 10, 10, 3],
[1234, 10, 10, 7],
[ 8, 10, 10, 11]])
numpy基本函数和方法一览
arange, array, copy, empty, empty_like, eye, fromfile, fromfunction, identity, linspace, logspace, mgrid, ogrid, ones, ones_like, r, zeros,zeros_like
Conversions
ndarray.astype, atleast_1d, atleast_2d, atleast_3d, mat
Manipulations
array_split, column_stack, concatenate, diagonal, dsplit, dstack, hsplit, hstack, ndarray.item, newaxis, ravel, repeat, reshape, resize,squeeze, swapaxes, take, transpose, vsplit, vstack
Questionsall, any, nonzero, where
Ordering
argmax, argmin, argsort, max, min, ptp, searchsorted, sort
Operations
choose, compress, cumprod, cumsum, inner, ndarray.fill, imag, prod, put, putmask, real, sum
Basic Statistics
cov, mean, std, var
Basic Linear Algebra
cross, dot, outer, linalg.svd, vdot
完整的函数和方法一览表链接:
9. 特殊的索引技巧
a = np.arange(12)**2
输出:
array([ 0, 1, 4, ..., 81, 100, 121])
i = np.array([1,1,3,8,5])
a[i]
输出:
array([ 1, 1, 9, 64, 25])
j = np.array([[3,4],[9,7]])
a[j]
输出:
array([[ 9, 16],
[81, 49]])
palette = np.array([[0,0,0],[255,0,0],[0,255,0],[0,0,255],[255,255,255]])
image = np.array([[0,1,2,0],[0,3,4,0]])
palette[image]
输出:
array([[[ 0, 0, 0],
[255, 0, 0],
[ 0, 255, 0],
[ 0, 0, 0]],
[[ 0, 0, 0],
[ 0, 0, 255],
[255, 255, 255],
[ 0, 0, 0]]])
i = np.array([[0,1],[1,2]])
j = np.array([[2,1],[3,3]])
a[i,j]
输出:
array([[ 2, 5],
[ 7, 11]])
l = [i,j]
a[l]
输出:
array([[ 2, 5],
[ 7, 11]])
a[i,2]
输出:
array([[ 2, 6],
[ 6, 10]])
a[:,j]
输出:
array([[[ 2, 1],
[ 3, 3]],
[[ 6, 5],
[ 7, 7]],
[[10, 9],
[11, 11]]])
s = np.array([i,j])
print(s)
array([[[0, 1],
[1, 2]],
[[2, 1],
[3, 3]]])
a[tuple(s)]
输出:
array([[ 2, 5],
[ 7, 11]])
print(tupe(s))
输出:
(array([[0, 1],
[1, 2]]), array([[2, 1],
[3, 3]]))
10. 寻找最大值/最小值及其对应索引值
time = np.linspace(20, 145, 5)
输出:
array([ 20. , 51.25, 82.5 , 113.75, 145. ])
data = np.sin(np.arange(20)).reshape(5,4)
输出:
array([[ 0. , 0.84147098, 0.90929743, 0.14112001],
[-0.7568025 , -0.95892427, -0.2794155 , 0.6569866 ],
[ 0.98935825, 0.41211849, -0.54402111, -0.99999021],
[-0.53657292, 0.42016704, 0.99060736, 0.65028784],
[-0.28790332, -0.96139749, -0.75098725, 0.14987721]])
ind = data.argmax(axis=0)
输出:
array([2, 0, 3, 1], dtype=int64)
time_max = time[ind]
输出:
array([ 82.5 , 20. , 113.75, 51.25])
data_max = data[ind, xrange(data.shape[1])]
输出:
array([ 0.98935825, 0.84147098, 0.99060736, 0.6569866 ])
np.all(data_max == data.max(axis=0))
输出:
True
a = np.arange(5)
a[[1,3,4]] = 0
print(a)
输出:
array([0, 0, 2, 0, 0])
a = np.arange(5)
a[[0,0,2]] = [1,2,3]
print(a)
输出:
array([2, 1, 3, 3, 4])
a = np.arange(5)
a[[0,0,2]] += 1
print(a)
输出:
array([1, 1, 3, 3, 4])
a = np.arange(12).reshape(3,4)
b = a > 4
输出:
array([[False, False, False, False],
[False, True, True, True],
[ True, True, True, True]], dtype=bool)
a[b]
输出:
array([ 5, 6, 7, 8, 9, 10, 11])
a[b] = 0
print(a)
输出:
array([[0, 1, 2, 3],
[4, 0, 0, 0],
[0, 0, 0, 0]])
a = np.arange(12).reshape(3,4)
b1 = np.array([False,True,True])
b2 = n.array([True,False,True,False])
a[b1,:]
输出:
array([[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])
a[b1]
输出:
array([[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])
a[:,b2]
输出:
array([[ 0, 2],
[ 4, 6],
[ 8, 10]])
a[b1,b2]
输出:
array([ 4, 10])
11. ix_() function
a = np.array([2,3,4,5])
b = np.array([8,5,4])
c = np.array([5,4,6,8,3])
ax,bx,cx = np.ix_(a,b,c)
print(ax) # (4L, 1L, 1L)
输出:
array([[[2]],
[[3]],
[[4]],
[[5]]])
print(bx) # (1L, 3L, 1L)
输出:
array([[[8],
[5],
[4]]])
print(cx) # (1L, 1L, 5L)
输出:
array([[[5, 4, 6, 8, 3]]])
result = ax + bx*cx
输出:
array([[[42, 34, 50, 66, 26],
[27, 22, 32, 42, 17],
[22, 18, 26, 34, 14]],
[[43, 35, 51, 67, 27],
[28, 23, 33, 43, 18],
[23, 19, 27, 35, 15]],
[[44, 36, 52, 68, 28],
[29, 24, 34, 44, 19],
[24, 20, 28, 36, 16]],
[[45, 37, 53, 69, 29],
[30, 25, 35, 45, 20],
[25, 21, 29, 37, 17]]])
result[3,2,4]
输出:17
12. 线性代数运算
a = np.array([[1.,2.],[3.,4.]])
a.transpose() # 转置
np.linalg.inv(a) # 求逆
u = np.eye(2) # 产生单位矩阵
np.dot(a,a) # 矩阵乘积
np.trace(a) # 求矩阵的迹
y = np.array([5.],[7.]])
np.linalg.solve(a,y) # 求解线性方程组
np.linalg.eig(a) # 特征分解
“Automatic” Reshaping
a = np.arange(30)
a.shape = 2,-1,3
a.shape # (2L, 5L, 3L)
print(a)
array([[[ 0, 1, 2],
[ 3, 4, 5],
[ 6, 7, 8],
[ 9, 10, 11],
[12, 13, 14]],
[[15, 16, 17],
[18, 19, 20],
[21, 22, 23],
[24, 25, 26],
[27, 28, 29]]])
x = np.arange(0,10,2)
y = np.arange(5)
m = np.vstack([x,y])
输出:
array([[0, 2, 4, 6, 8],
[0, 1, 2, 3, 4]])
n = np.hstack([x,y])
输出:
array([0, 2, 4, 6, 8, 0, 1, 2, 3, 4])
13. 矩阵的创建
a = np.array([1,2,3])
a1 = np.mat(a)
输出:
matrix([[1, 2, 3]])
type(a1)
输出:
numpy.matrixlib.defmatrix.matrix
a1.shape
输出:
(1L, 3L)
a.shape
输出:
(3L,)
b=np.matrix([1,2,3])
输出:
matrix([[1, 2, 3]])
from numpy import *
data1 = mat(zeros((3,3)))
data2 = mat(ones((2,4)))
data3 = mat(random.rand(2,2))
data4 = mat(random.randint(2,8,size=(2,5)))
data5 = mat(eye(2,2,dtype=int))
14. 常见的矩阵运算
a1 = mat([1,2])
a2 = mat([[1],[2]])
a3 = a1 * a2
print(a3)
输出:
matrix([[5]])
print(a1*2)
输出:
matrix([[2, 4]])
a1 = mat(eye(2,2)*0.5)
print(a1.I)
输出:
matrix([[ 2., 0.],
[ 0., 2.]])
a1 = mat([[1,2],[2,3],[4,2]])
a1.sum(axis=0)
输出:
matrix([[7, 7]])
a1.sum(axis=1)
输出:
matrix([[3],
[5],
[6]])
a1.max() # 求矩阵元素最大值
输出:
4
a1.min() # 求矩阵元素最小值
输出:
1
np.max(a1,0) # 求矩阵每列元素最大值
输出:
matrix([[4, 3]])
np.max(a1,1) # 求矩阵每行元素最大值
输出:
matrix([[2],
[3],
[4]])
a = mat(ones((2,2)))
b = mat(eye((2)))
c = hstack((a,b))
输出:
matrix([[ 1., 1., 1., 0.],
[ 1., 1., 0., 1.]])
d = vstack((a,b))
输出:
matrix([[ 1., 1.],
[ 1., 1.],
[ 1., 0.],
[ 0., 1.]])
15. 矩阵、数组、列表之间的互相转换
aa = [[1,2],[3,4],[5,6]]
bb = array(aa)
cc = mat(bb)
cc.getA() # 矩阵转换为数组
cc.tolist() # 矩阵转换为列表
bb.tolist() # 数组转换为列表
# 当列表为一维时,情况有点特殊
aa = [1,2,3,4]
bb = array(aa)
输出:
array([1, 2, 3, 4])
cc = mat(bb)
输出:
matrix([[1, 2, 3, 4]])
cc.tolist()
输出:
[[1, 2, 3, 4]]
bb.tolist()
输出:
[1, 2, 3, 4]
cc.tolist()[0]
输出:
[1, 2, 3, 4]
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18