京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据想做驱动多产业发展的“引擎”,还需掌握哪些技巧
早在1980年,著名未来学家托夫勒在其所著的《第三次浪潮》中就将“大数据”称颂为“第三次浪潮的华彩乐章”,到了现在,大数据的热浪已经覆盖了整个时代。
最近几年,资本一直追着大数据跑,大数据也一直在积极赋能众多产业,包括金融、医疗、教育等,有数据显示,到2020年,中国大数据产业规模或达13626亿元的高点。毫无疑问,大数据已经成为了热门投资方向之一。但是喧嚣躁动之下,传闻中的大面积收割却一直没来。这究竟是数据创业的的玩家不行,还是那些大数据全都走错了道?
一:资本加注下的大数据,行业依然是冰火两重天
据不完全统计,2017年上半年,至少有63家大数据创业企业在国内获得了融资,总融资金额超过68亿人民币,其中获得上亿元融资的企业就有17家,获得上千万元融资的大数据公司有41家,占总数的92%。显然,资本对有潜力的大数据创业公司并不吝啬。
(数据及图片来源:大数据频道)
不过大数据行业里也不尽然都是好消息。在资本狂欢之下,“大数据”开始炒概念,不少“伪数据”公司从中“沾光”,进而阻碍了整个行业的发展。除此之外,数创公司本身还面临着两个难题。
1. 离散的数据被藏在科技巨头们的黑箱中
数据收集一直是数创公司的难题,一方面,数据存在禁地,数据安全和隐私是不可逾越的高墙;另一方面,BAT等科技巨头垄断了大量的社交数据、电商数据和行为数据。也就是说,数创公司即使走出了不能被利用的数据禁地,转身就会投入被BAT们垄断的大数据海洋。
庆幸的是,BAT等科技巨头虽然有着绝对优势,但他们自身涉及的产业非常多,包括金融业务、文娱业务等等,难免会和其他机构存在竞争关系。所以,其他企业掌握的筹码是能够与各产业机构进行无间合作。
美国Palantir大数据服务公司最为人称道的一个案例是,协助多家银行追回了纳斯达克前主席麦道夫所隐藏起来的数十亿美元巨款。
而一直对标Palantir的中国企业中译语通,则是将图像识别、语音识别,包括计算机视觉自觉生成的广告、数字精准营销等技术结合到短视频应用中。
由高盛领投的数创公司Crux 主要业务则是建立信息供应链保证各个金融机构的数据隐私,确保他们不被私自售卖和利用。
从中我们可以看出,与大象共舞,数创企业显然不必用数据量和BAT等科技巨头硬碰硬,从细微之处进行创新将是个不错的选择。
2. 数据可视化是企业的薄弱环节
虽然现在数据创业公司颇多,且无论做SaaS还是做外包服务都已相当成熟,但“数据可视化”仍是大数据行业里较为薄弱的环节。
数据可视化有非常多实际运用的场景,有人觉得可视化仅仅是将数据变成图,其实那只是针对静态的数据,如果做实时数据的呈现,那就是动态的,而不同的呈现方式对背后的技术要求也会不一样。所以,数据可视化是一个技术含量高的领域。
因此,许多数创公司在展开业务,亲身接触到不同行业、不同背景客户的可视化需求后,就会发现一技术环节仍旧面临着许多挑战。所以,企业想要打造高效率、标准化、产品化的服务,就必须探究不同场景的技术解决方案,并开发相应的工具。
谷歌曾经参与创建非营利组织Global Fishing Watch,构建了一个透明可视的大数据平台,可以观察全球海上转运船只的动态。数据可视化让我们对全球商业捕鱼有了一个整体性的洞察与监测。
中译语通在2017年就发布了数据可视化应用,结合了知识图谱技术,可以在任何一个场景应用,相当于是大数据监测的部件;数创企业DataHunter也将根据各行业不同的分析理念和思路,计划在通用性的标准化之上再做行业版。
数据的分析和可视化可以说是大数据服务的“最后一公里”,但这并不是所有企业都有能力解决。毫无疑问,只有打通这一环节,数创企业才能获得不同产业的认可。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09在日常办公数据分析中,Excel数据透视表是最常用的高效工具之一——它能快速对海量数据进行分类汇总、分组统计,将杂乱无章的数 ...
2026-02-09表结构数据作为结构化数据的核心载体,其“获取-加工-使用”全流程,是CDA(Certified Data Analyst)数据分析师开展专业工作的 ...
2026-02-09在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03