京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据和人工智能正在改变商业世界八大方式
如果你像许多其他人一样,想知道大数据和人工智能对商业的好处到底是什么,那么你就是在正确的地方。
01.改进商业智能
由于商业智能,分析业务变得更容易,更有效。使商业智能成为可能的数据工具集是大数据。在引入大数据之前,商业智能有限。但是,现在,商业智能被认为是合法的职业。
事实上,许多公司和企业通过聘请商业情报专家来利用这一新的信息涌入。这是为了帮助他们的公司更上一层楼。
2.了解,定位和服务客户
在大数据应用方面,这是最知名的领域之一。主要关注点是使用大数据来了解客户,以及他们的偏好和行为。
通过实施大数据(以及雇用大数据专家),公司现在可以通过文本分析,浏览器日志和社交媒体数据扩展其传统数据集,从而更全面地了解其客户。
这里的主要目标是创建预测模型。
3.改变社交媒体的使用方式
AI影响商业世界的主要方式之一是通过社交媒体。在未来几个月和几年中,毫无疑问,实时定位的个性化内容将会增加。所有这些都是增加销售机会的最终目标。
这是可能的,因为AI可以使用有效的行为定位方法。AI的能力就是一个例子。由于启用了营销堆栈,AI可以有效且准确地确定任何平台上的某人何时开始搜索新的客户关系管理(CRM)软件。有了这些信息,企业可以自动响应,提供更好的购买体验。
4.客户响应产品的介绍
大数据不仅可以通过积极主动地改善客户服务,而且还允许公司制作客户响应产品。现在,产品设计专注于以前所未有的方式满足客户的需求。
而不是依靠客户告诉企业他们想要从产品中得到什么,数据分析可以用来预测产品的需求。
由于大数据,公司可以通过购买习惯,调查甚至客户的案例场景来收集信息,从而确定未来产品应该做什么和看起来像什么。
5.提高欺诈预防能力
那些已成为专业“欺诈者”的人已经在现代数字世界中提升了他们的游戏。虽然这是事实,但由AI提供支持的欺诈检测工具的功能可以帮助企业抵御这些复杂的欺诈计划。
这要归功于利用视频识别,自然语言处理,语音识别,机器学习引擎和自动化的企业。
6.效率的提高
工业工程师是可以使流程更高效的专业人员。他们明白,没有大数据,效率的提高几乎是不可能的。
如今,大数据提供了有关每个流程和产品的丰富信息。那些知道如何使用它的人理解丰富的数据正在讲述一个故事,而智能企业正在倾听。
工程师们还使用大数据来寻找使流程更有效运行的方法。对大数据的分析也适用于约束理论。对于大数据,现在更容易识别约束。一旦被识别,就可以快速确定约束是否具有约束力以及如何约束。
通过发现和删除约束,业务可以看到吞吐量和性能的大幅提升。大数据有助于找到所有这些答案。
7.启用持续客户支持
现在,聊天机器人很常见且能够提供全天候客户支持,企业可以利用其CRM系统中收集的数据。这使他们能够获得更有价值的客户见解。
当充分发挥其潜力时,数据可以帮助优化多个接触点,包括聊天机器人交互性,以及创建充满客户数据的反馈循环。
这意味着AI可帮助企业创造最终的客户体验。这一切都归功于收集,分析和使用的必不可少的客户数据。
8.降低成本
利用大数据,企业可以使用可用信息来降低成本。怎么样?通过发现趋势和预测行业内的未来事件。
了解何时可能发生某些事情有助于改进规划和预测。负责规划的人现在知道何时生产和生产多少。他们可以预测在给定时间需要多少库存,确保客户满意度而不会产生过多的成本。
毕竟,维护库存非常昂贵。企业不仅要承担运输成本,还要将资金用于不必要的库存。
通过大数据分析,可以预测销售何时发生以及何时需要生产。
更深入的分析甚至可以显示企业何时购买库存的理想时间以及需要保留多少库存。
大数据和人工智能:商业的未来
如果您想帮助您的企业实现更多目标,那么拥抱大数据和AI是必须的。
事实上,不久之后,那些未能接受这项新技术的企业将被抛在后面。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24在企业数字化转型的深水区,数据已成为核心生产要素,而“让数据可用、好用”则是挖掘数据价值的前提。对CDA(Certified Data An ...
2025-12-24数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23在数据驱动决策的浪潮中,CDA(Certified Data Analyst)数据分析师的核心价值,早已超越“整理数据、输出报表”的基础层面,转 ...
2025-12-23在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22在数据量爆炸式增长的数字化时代,企业数据呈现“来源杂、格式多、价值不均”的特点,不少CDA(Certified Data Analyst)数据分 ...
2025-12-22在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19