
Python中的列表生成式与生成器学习教程
这篇文章主要介绍了Python中的列表生成式与生成器学习教程,Python中的Generator生成器比列表生成式功能更为强大,需要的朋友可以参考下
列表生成式
即创建列表的方式,最笨的方法就是写循环逐个生成,前面也介绍过可以使用range()函数来生成,不过只能生成线性列表,下面看看更为高级的生成方式:
>>> [x * x for x in range(1, 11)]
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
写列表生成式时,把要生成的元素x * x放到前面,后面跟for循环,就可以把list创建出来,十分有用,多写几次,很快就可以熟悉这种语法。
你甚至可以在后面加上if判断:
>>> [x * x for x in range(1, 11) if x % 2 == 0]
[4, 16, 36, 64, 100]
循环嵌套,全排列:
>>> [m + n for m in 'ABC' for n in 'XYZ']
['AX', 'AY', 'AZ', 'BX', 'BY', 'BZ', 'CX', 'CY', 'CZ']
看一个简单应用,列出当前目录下所有文件和目录:
>>> import os
>>> [d for d in os.listdir('.')]
['README.md', '.git', 'image', 'os', 'lib', 'sublime-imfix', 'src']
前面也说过Python里循环中可以同时引用两个变量,所以生成变量也可以:
>>> d = {'x': 'A', 'y': 'B', 'z': 'C' }
>>> [k + '=' + v for k, v in d.iteritems()]
['y=B', 'x=A', 'z=C']
也可以通过一个list生成另一个list,例如把一个list中所有字符串变为小写:
>>> L = ['Hello', 'World', 'IBM', 'Apple']
>>> [s.lower() for s in L]
['hello', 'world', 'ibm', 'apple']
但是这里有个问题,list中如果有其他非字符串类型,那么lower()会报错,解决办法:
>>> L = ['Hello', 'World', 'IBM', 'Apple', 12, 34]
>>> [s.lower() if isinstance(s,str) else s for s in L]
['hello', 'world', 'ibm', 'apple', 12, 34]
此外,列表生成式还有许多神奇用法,说明请看注释:
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
list(range(1, 11))
# 生成1乘1,2乘2...10乘10
L = []
for x in range(1, 11):
L.append(x * x)
# 上面太麻烦,看下面
[x * x for x in range(1, 11)]
# [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
# 加上if,就可以筛选出仅偶数的平方
[x * x for x in range(1, 11) if x % 2 == 0]
# [4, 16, 36, 64, 100]
# 两层循环,可以生成全排列
[m + n for m in 'ABC' for n in 'XYZ']
# ['AX', 'AY', 'AZ', 'BX', 'BY', 'BZ', 'CX', 'CY', 'CZ']
# 列出当前目录下的所有文件和目录名
import os
[d for d in os.listdir('.')] # on.listdir可以列出文件和目录
# 列表生成式也可以使用两个变量来生成list:
d = {'x': 'A', 'y': 'B', 'z': 'C'}
[k + '=' + v for k, v in d.items()]
# ['x=A', 'z=C', 'y=B']
# 把一个list中所有的字符串变成小写
L = ['Hello', 'World', 'IBM', 'Apple']
[s.lower() for s in L]
# ['hello', 'world', 'ibm', 'apple']
L1 = ['Hello', 'World', 18, 'Apple', None]
L2 = [s.lower() for s in L1 if isinstance(s, str)]
print(L2)
# ['hello', 'world', 'apple']
# isinstance函数可以判断一个变量是不是字符串
生成器
列表生成式虽然强大,但是也会有一个问题,当我们想生成一个很大的列表时,会非常耗时,并且占用很大的存储空间,关键是这里面的元素可能你只需要用到前面很少的一部分,大部分的空间和时间都浪费了。Python提供了一种边计算边使用的机制,称为生成器(Generator),创建一个Generator最简单的方法就是把[]改为():
>>> g = (x * x for x in range(10))
>>> g
<generator object <genexpr> at 0x7fe73eb85cd0>
如果要一个一个打印出来,可以通过generator的next()方法:
>>> g.next()
0
>>> g.next()
1
>>> g.next()
4
>>> g.next()
9
>>> g.next()
16
>>> g.next()
25
>>> g.next()
36
>>> g.next()
49
>>> g.next()
64
>>> g.next()
81
>>> g.next()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
StopIteration
其实generator object也是可迭代的,所以可以用循环打印,还不会报错。
>>> g = (x * x for x in range(10))
>>> for n in g:
... print n
...
这是简单的推算算法,但是如果算法比较复杂,写在()里就不太合适了,我们可以换一种方式,使用函数来实现。
比如,著名的斐波拉契数列(Fibonacci),除第一个和第二个数外,任意一个数都可由前两个数相加得到:
1, 1, 2, 3, 5, 8, 13, 21, 34, …
斐波拉契数列用列表生成式写不出来,但是,用函数把它打印出来却很容易:
def fib(max):
n, a, b = 0, 0, 1
while n < max:
print b
a, b = b, a + b
n = n + 1
上面的函数可以输出斐波那契数列的前N个数,这个也是通过前面的数推算出后面的,所以可以把函数变成generator object,只需要把print b改为yield b即可。
def fib(max):
n, a, b = 0, 0, 1
while n < max:
yield b
a, b = b, a + b
n = n + 1
如果一个函数定义中包含了yield关键字,这个函数就不在是普通函数,而是一个generator object。
>>> fib(6)
<generator object fib at 0x7fa1c3fcdaf0>
>>> fib(6).next()
1
所以要想调用这个函数,需要使用next()函数,并且遇到yield语句返回(可以把yield理解为return):
def odd():
print 'step 1'
yield 1
print 'step 2'
yield 3
print 'step 3'
yield 5
看看调用输出结果:
>>> o = odd()
>>> o.next()
step 1
1
>>> o.next()
step 2
3
>>> o.next()
step 3
5
>>> o.next()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
StopIteration
同样也可以改为for循环语句输出。例如:
def odd():
print 'step 1'
yield 1
print 'step 2'
yield 2
print 'step 3'
yield 3
if __name__ == '__main__':
o = odd()
while True:
try:
print o.next()
except:
break
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-252025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-25从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-25用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18