京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Python使用正则表达式获取网页中所需要的信息
使用正则表达式的几个步骤:
1、用import re 导入正则表达式模块;
2、用re.compile()函数创建一个Regex对象;
3、用Regex对象的search()或findall()方法,传入想要查找的字符串,返回一个Match对象;
4、调用Match对象的group()方法,返回匹配到的字符串。
在交互式环境中简单尝试一下,查询字符串中的固话:
import re
text = '小明家的固话是0755-123456,而小丽家的固话时0789-654321,小王家的电话是123456789'#用于检测的字符串
ph_re = re.compile(r'\d{4}?-\d+') #创建Regex对象,匹配几种电话的方式,\d表示0-9的数字,{4}表示前面的匹配4次,?表示可选,+表示出现1次或多次。
matchs1 = ph_re.findall(text) #findall()表示查找所有匹配项,返回一个字符串
matchs2 = ph_re.search(text)#search(),查找第一次匹配的文本,返回一个对象。
print(matchs1)
print(matchs2)
matchs2.group()
返回的结果,是这样的:
findall()方法返回的是一个字符串,可以直接打印出来。而search()方法返回的是一个对象,所以打印出来的是是如图的第二行。
调用group(),对象返回匹配的结果。
最后,小王的电话之所以没有匹配到,是因为'-'没有进行可选即在其后加上‘?'。
下面进行一个小的实验,获取某个网页中所有的http/https网址,并计算有多少个。
首先是获取HTML文件。这里要用到requests模块。
# -*- coding: utf-8 -*-
import requests
import re
def get_html(url):
res = requests.get(url)
res.encoding = 'utf-8'
html = res.text
return html
这里get_html函数返回的,其实就类似上面例子中的text,用来匹配的文本。
然后,创建正则表达式:
def get_addr(response):
addr_regex = re.compile(r'''(
(http://|https://)? #http/https
(www)?
(\.[a-z1-9A-Z]+)
(\.com|\.cn)
)''',re.VERBOSE)#匹配网址,
matchs = []
for groups in addr_regex.findall(response):
matchs.append(groups[0])
if len(matchs) == 0:
print('没有网址')
return matchs
这里向re.compile(),传入变量re.VERBOSE,作为第二个参数,可以将正则表达式放在多行,并进行注释,如上。
返回一个matchs列表对象。
再来个启动函数。
def start():
url = 'http://news.163.com/18/0127/18/D966K4CO0001899N.html'
a = get_html(url)
b = get_addr(a)
print('\n'.join(b))
print(str(len(b)))
print('ok')
if __name__ == '__main__':
start()
这里传入的url是我随意找的一个新闻链接。
然后调用get_html()和get_addr(),就得到了想要的东西。str(len(b)),为统计的数量。
测试的结果是类似这样的:
这里似乎获取一些URL,没什么卵用。。。但是,如果结合前面的查询新闻列表的方式,获取批量url,
而创建的正则是xxx.jpg,然后调用os模块,os.mkdir(folder)、os.chdir(folder),将获取到的匹配结果写入文件,放入某个文件夹。
那么就可以实现,从某些网站上批量获取jpg图片,然后存入某个文件夹的爬虫功能。实测,可行!
总结
以上所述是小编给大家介绍的Python使用正则获取网页中所需要的信息,希望对大家有所帮助
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24