
Python使用正则表达式获取网页中所需要的信息
使用正则表达式的几个步骤:
1、用import re 导入正则表达式模块;
2、用re.compile()函数创建一个Regex对象;
3、用Regex对象的search()或findall()方法,传入想要查找的字符串,返回一个Match对象;
4、调用Match对象的group()方法,返回匹配到的字符串。
在交互式环境中简单尝试一下,查询字符串中的固话:
import re
text = '小明家的固话是0755-123456,而小丽家的固话时0789-654321,小王家的电话是123456789'#用于检测的字符串
ph_re = re.compile(r'\d{4}?-\d+') #创建Regex对象,匹配几种电话的方式,\d表示0-9的数字,{4}表示前面的匹配4次,?表示可选,+表示出现1次或多次。
matchs1 = ph_re.findall(text) #findall()表示查找所有匹配项,返回一个字符串
matchs2 = ph_re.search(text)#search(),查找第一次匹配的文本,返回一个对象。
print(matchs1)
print(matchs2)
matchs2.group()
返回的结果,是这样的:
findall()方法返回的是一个字符串,可以直接打印出来。而search()方法返回的是一个对象,所以打印出来的是是如图的第二行。
调用group(),对象返回匹配的结果。
最后,小王的电话之所以没有匹配到,是因为'-'没有进行可选即在其后加上‘?'。
下面进行一个小的实验,获取某个网页中所有的http/https网址,并计算有多少个。
首先是获取HTML文件。这里要用到requests模块。
# -*- coding: utf-8 -*-
import requests
import re
def get_html(url):
res = requests.get(url)
res.encoding = 'utf-8'
html = res.text
return html
这里get_html函数返回的,其实就类似上面例子中的text,用来匹配的文本。
然后,创建正则表达式:
def get_addr(response):
addr_regex = re.compile(r'''(
(http://|https://)? #http/https
(www)?
(\.[a-z1-9A-Z]+)
(\.com|\.cn)
)''',re.VERBOSE)#匹配网址,
matchs = []
for groups in addr_regex.findall(response):
matchs.append(groups[0])
if len(matchs) == 0:
print('没有网址')
return matchs
这里向re.compile(),传入变量re.VERBOSE,作为第二个参数,可以将正则表达式放在多行,并进行注释,如上。
返回一个matchs列表对象。
再来个启动函数。
def start():
url = 'http://news.163.com/18/0127/18/D966K4CO0001899N.html'
a = get_html(url)
b = get_addr(a)
print('\n'.join(b))
print(str(len(b)))
print('ok')
if __name__ == '__main__':
start()
这里传入的url是我随意找的一个新闻链接。
然后调用get_html()和get_addr(),就得到了想要的东西。str(len(b)),为统计的数量。
测试的结果是类似这样的:
这里似乎获取一些URL,没什么卵用。。。但是,如果结合前面的查询新闻列表的方式,获取批量url,
而创建的正则是xxx.jpg,然后调用os模块,os.mkdir(folder)、os.chdir(folder),将获取到的匹配结果写入文件,放入某个文件夹。
那么就可以实现,从某些网站上批量获取jpg图片,然后存入某个文件夹的爬虫功能。实测,可行!
总结
以上所述是小编给大家介绍的Python使用正则获取网页中所需要的信息,希望对大家有所帮助
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08LSTM 输出不确定的成因、影响与应对策略 长短期记忆网络(LSTM)作为循环神经网络(RNN)的一种变体,凭借独特的门控机制,在 ...
2025-07-07统计学方法在市场调研数据中的深度应用 市场调研是企业洞察市场动态、了解消费者需求的重要途径,而统计学方法则是市场调研数 ...
2025-07-07CDA数据分析师证书考试全攻略 在数字化浪潮席卷全球的当下,数据已成为企业决策、行业发展的核心驱动力,数据分析师也因此成为 ...
2025-07-07剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03