
大数据背后是否意味着大风险
越来越多的用户被警告说,他们所收集数据是如何被共享、又是如何被使用的而感到震惊。显然,人们需要更好的管理整个企业关键利益相关者和企业相关部门的数据资料:从首席营销官到IT部门,企业必须制定相关的指导方针和最佳实践方案用于使用、储存和转让企业业务内外的相关数据。
从信息安全的角度,围绕关键问题的大数据往往分为以下五个方面:
1、网络安全:随着越来越多的交易、对话、互动和数据在网上进行,这种刺激使得网络犯罪分子比以往任何时候都要猖獗。据2012年一月信息安全论坛的题为《网络安全策略:实现网络弹性》的报告显示,“今天的网络犯罪分子都组织得更好、更专业,并具备有力的工具和能力,以针对确定的目标进行攻击。这不是一次性的数据破坏或黑客攻击而成为报纸头条新闻的故事,而却具有深远的后果,这对企业可能意味着声誉受损,法律责任,甚至财政破产。网络弹性和防备战略对于企业大数据是至关重要的。
2、云中的数据:企业必须迅速采用和实施新技术的压力,比如云服务。经常面临大数据的具有挑战性的存储和处理的需求。而这其中包含了不可预见的风险和意想不到的后果。在云中的大数据对于网络犯罪分子来说,是一个极具吸引力的攻击目标。这对企业来说提出了更多的需求,他们必须采购战略正确的安全的云。
3、个人设备安全管理:携手大数据的增长的是新的移动设备使用范围的扩大,用于收集、存储、访问和数据传输。企业现在面临的企业员工在工作场所使用个人设备的安全管理挑战,必须平衡安全与生产力的需要。员工智能分析和浏览网页详情是安全恶梦,尤其是当这些混合了家庭和工作数据。企业应当确保其雇员接受相关的个人设备使用政策,并继续在符合其既定的安全政策下管理移动设备。
4、相互关联的供应链:企业往往是复杂的、全球性的和相互依存的供应链的一部分,而这一部分往往可能是最薄弱的环节。信息是通过简单平凡的数据供应链结合起来的,包括从贸易或商业秘密到知识产权的一系列信息,如果损失可能导致企业声誉受损,受到财务或法律的惩罚。信息安全协调在业务关系中起着相当重要的作用,这其中包括外包,离岸供应链和云服务提供商。
5、数据保密:大量的数据产生、存储和分析,数据保密问题将在未来几年内成为一个更大的问题。企业必须尽快开始规划新的数据保护,同时监测进一步的立法和监管的发展。
数据聚合和大数据分析,是保证企业的营销情报的宝库。能够在针对客户情况的基础上,结合过去的采购模式和以前的“私人”的喜好进行销售,是营销的法宝。但企业领导人渴望采用这些新技术,应了解申请多个司法管辖区的法律和其他限制。企业还应该实现数据隐私最佳实践和设计分析程序,建立相关透明度和问责制,永远不要忽视大数据、流程和技术的作用。
不言而喻,确保数据的输入和输出是一个关键的挑战,可以影响不只是潜在的商业活动和机会,但也有深远的法律含义。保持灵活和理想的预期变化的调节,而不是陷入困境时,才临时寻求解决方案。
话虽这么说,在初期,我们还没有看到大量的外部需求,强制要求企业确保信息的完整性。然而,随着企业规模扩大,业务处理的信息仍然会增加,需要业务决策密切联系原始数据的大数据分析,信息的质量变得越来越重要。如果同样复杂的分析可以应用到相关的安全数据,大数据,甚至可能被用于提高信息安全。
而这样的解决方案可能似乎不是很普遍,你可以放心,人们正在研究大数据分析被用于防止欺诈检测,网络安全,社会分析和实时多式联运监测。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29