京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据科学家的15项原则
作为一个数据科学家,我为我的日常工作总结开发出15项原则,这些是我本人也遵循的:
1、不要用数据说谎或吹牛: 对经验性证据要诚实坦率。最重要的是不要用数据自欺欺人。
2、建立永久工具并分享给他人: 花费一些日常工作时间去建立一些能使自己和他人生活变得轻松的工具(译者补充:我为人人,人人为我)。我们可是该死的人类,我们应该是工具的制造者!
3、不断自我教育: 看在佛祖的份上,你可是个科学家哦。去阅读研究生水平的核心数学和统计方法教材吧,永远不要安逸于你在走廊里从同事那得到的对某个方法的拙劣解释,学习基本原理可以让你玩出花样来。阅读最近的论文,参加研讨会,发表和评论论文。对此没有捷径。
4、提高你的技能: 学好一种语言,这样你才能被称为行家里手。其他语言也要学到能与别人沟通。不要忘记,SQL和英语很象,这个星球上每个白痴都能说,但你只有真正掌握它才可以写出优美的诗篇。学习一种编译性语言、一种解释性语言,和R语言。或者只需要学习R!它是丑陋的,但它会给你一个优势。搞透Matlab,你已经不再是没毕业的学生了。学习Unix,即使你平时使用Windows,学习sed和grep等所有那些东西,你可以用bash和powershell做些奇妙的事情。如果你愿意,也学学Hadoop,但要知道它是一个蹩脚的系统。
5、明白数据科学家有个生存意义 “踢人们屁股并让他们震惊”: 每天做一件与此相关的事。(译者注:kick ass在一般情况下指“很厉害;很拽”,但对于数据科学家来说,通常是用数据来揭示人们错误或具有危险性的行为,以此引起关注,所以用本意“踢屁股”反而比较合适)
6、通过向别人展示工作来经常挑战自我:不要害怕一些恶棍会批评你的工作,粉碎他们。如果你想害怕蟑螂的话,那你就不要走路了!
7、不要吝惜知识,也不要害怕问问题: 有些人对他们的知识缺乏信心,不去分享它,原谅他们,但不要成为他们中的一个。
8、先开发出一些思路,然后听取别人的看法,利用他们关于这一领域所知道的知识,但不要让你自己被其束缚: 如果他们真牛到可以用他们所知道的来解决问题,他们就不会来找你要解决方案了。
9、出去和人们在一起,与之交谈,互通有无,他山之石可以攻玉。
10、为你温和的代码建立个令人印象深刻和交互性强的用户界面: 代码是我们的语言(译者注:但不是用户的,所以……),让你的代码通过好的UI来闪耀光辉吧。
11、有效使用可视化技术,避免难以理解的图形: 可视化的唯一用途是使数据易于理解而非令人困惑。
12、学习新技术,努力理解经典技术的原理
13、多揽多做: 这就是天才工作的方式。不要害怕提出创造性的想法。你听说过“低调说话,高调做事”?不要觉得这很华丽,这其实是无能鼠辈工作的方式,不要成为他们中的一个。
14、保持创造力和关注: 你可以通过创造力和关注取得成功(咖啡因对这个有点帮助,但别过头儿)。
15、积极起来,努力工作。如果有人想阻止你,只管碾碎他们。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA一级知识点汇总手册 第四章 战略与业务数据分析考点43:战略数据分析基础考点44:表格结构数据的使用考点45:输入数据和资源 ...
2026-02-22CDA一级知识点汇总手册 第三章 商业数据分析框架考点27:商业数据分析体系的核心逻辑——BSC五视角框架考点28:战略视角考点29: ...
2026-02-20CDA一级知识点汇总手册 第二章 数据分析方法考点7:基础范式的核心逻辑(本体论与流程化)考点8:分类分析(本体论核心应用)考 ...
2026-02-18第一章:数据分析思维考点1:UVCA时代的特点考点2:数据分析背后的逻辑思维方法论考点3:流程化企业的数据分析需求考点4:企业数 ...
2026-02-16在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10