京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据科学家的15项原则
作为一个数据科学家,我为我的日常工作总结开发出15项原则,这些是我本人也遵循的:
1、不要用数据说谎或吹牛: 对经验性证据要诚实坦率。最重要的是不要用数据自欺欺人。
2、建立永久工具并分享给他人: 花费一些日常工作时间去建立一些能使自己和他人生活变得轻松的工具(译者补充:我为人人,人人为我)。我们可是该死的人类,我们应该是工具的制造者!
3、不断自我教育: 看在佛祖的份上,你可是个科学家哦。去阅读研究生水平的核心数学和统计方法教材吧,永远不要安逸于你在走廊里从同事那得到的对某个方法的拙劣解释,学习基本原理可以让你玩出花样来。阅读最近的论文,参加研讨会,发表和评论论文。对此没有捷径。
4、提高你的技能: 学好一种语言,这样你才能被称为行家里手。其他语言也要学到能与别人沟通。不要忘记,SQL和英语很象,这个星球上每个白痴都能说,但你只有真正掌握它才可以写出优美的诗篇。学习一种编译性语言、一种解释性语言,和R语言。或者只需要学习R!它是丑陋的,但它会给你一个优势。搞透Matlab,你已经不再是没毕业的学生了。学习Unix,即使你平时使用Windows,学习sed和grep等所有那些东西,你可以用bash和powershell做些奇妙的事情。如果你愿意,也学学Hadoop,但要知道它是一个蹩脚的系统。
5、明白数据科学家有个生存意义 “踢人们屁股并让他们震惊”: 每天做一件与此相关的事。(译者注:kick ass在一般情况下指“很厉害;很拽”,但对于数据科学家来说,通常是用数据来揭示人们错误或具有危险性的行为,以此引起关注,所以用本意“踢屁股”反而比较合适)
6、通过向别人展示工作来经常挑战自我:不要害怕一些恶棍会批评你的工作,粉碎他们。如果你想害怕蟑螂的话,那你就不要走路了!
7、不要吝惜知识,也不要害怕问问题: 有些人对他们的知识缺乏信心,不去分享它,原谅他们,但不要成为他们中的一个。
8、先开发出一些思路,然后听取别人的看法,利用他们关于这一领域所知道的知识,但不要让你自己被其束缚: 如果他们真牛到可以用他们所知道的来解决问题,他们就不会来找你要解决方案了。
9、出去和人们在一起,与之交谈,互通有无,他山之石可以攻玉。
10、为你温和的代码建立个令人印象深刻和交互性强的用户界面: 代码是我们的语言(译者注:但不是用户的,所以……),让你的代码通过好的UI来闪耀光辉吧。
11、有效使用可视化技术,避免难以理解的图形: 可视化的唯一用途是使数据易于理解而非令人困惑。
12、学习新技术,努力理解经典技术的原理
13、多揽多做: 这就是天才工作的方式。不要害怕提出创造性的想法。你听说过“低调说话,高调做事”?不要觉得这很华丽,这其实是无能鼠辈工作的方式,不要成为他们中的一个。
14、保持创造力和关注: 你可以通过创造力和关注取得成功(咖啡因对这个有点帮助,但别过头儿)。
15、积极起来,努力工作。如果有人想阻止你,只管碾碎他们。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22