京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Python中time模块与datetime模块在使用中的不同之处
Python 中提供了对时间日期的多种多样的处理方式,主要是在 time 和 datetime 这两个模块里。今天稍微梳理一下这两个模块在使用上的一些区别和联系。
time
在 Python 文档里,time是归类在Generic Operating System Services中,换句话说, 它提供的功能是更加接近于操作系统层面的。通读文档可知,time 模块是围绕着 Unix Timestamp 进行的。
该模块主要包括一个类 struct_time,另外其他几个函数及相关常量。 需要注意的是在该模块中的大多数函数是调用了所在平台C library的同名函数, 所以要特别注意有些函数是平台相关的,可能会在不同的平台有不同的效果。另外一点是,由于是基于Unix Timestamp,所以其所能表述的日期范围被限定在 1970 - 2038 之间,如果你写的代码需要处理在前面所述范围之外的日期,那可能需要考虑使用datetime模块更好。文档解释比较费劲,具体看看怎么用:
In [1]: import time
In [2]: time.time()
Out[2]: 1414332433.345712
In [3]: timestamp = time.time()
In [4]: time.gmtime(timestamp)
Out[4]: time.struct_time(tm_year=2014, tm_mon=10, tm_mday=26, tm_hour=14, tm_min=7, tm_sec=13, tm_wday=6, tm_yday=299, tm_isdst=0)
In [5]: time.localtime(timestamp)
Out[5]: time.struct_time(tm_year=2014, tm_mon=10, tm_mday=26, tm_hour=22, tm_min=7, tm_sec=13, tm_wday=6, tm_yday=299, tm_isdst=0)
In [6]: struct_time = time.localtime(timestamp)
In [7]: time.ctime(timestamp)
Out[7]: 'Sun Oct 26 22:07:13 2014'
In [8]: time.asctime(struct_time)
Out[8]: 'Sun Oct 26 22:07:13 2014'
In [9]: time.mktime(struct_time)
Out[9]: 1414332433.0
In [10]: time.strftime("%a, %d %b %Y %H:%M:%S +0000", struct_time)
Out[10]: 'Sun, 26 Oct 2014 22:07:13 +0000'
In [11]: time.strptime("30 Nov 00", "%d %b %y")
Out[11]: time.struct_time(tm_year=2000, tm_mon=11, tm_mday=30, tm_hour=0, tm_min=0, tm_sec=0, tm_wday=3, tm_yday=335, tm_isdst=-1)
问题不大,可能有时候需要注意一下使用的时区。
datetime
datetime 比 time 高级了不少,可以理解为 datetime 基于 time 进行了封装,提供了更多实用的函数。在datetime 模块中包含了几个类,具体关系如下:
object
timedelta # 主要用于计算时间跨度
tzinfo # 时区相关
time # 只关注时间
date # 只关注日期
datetime # 同时有时间和日期
名称比较绕口,在实际实用中,用得比较多的是 datetime.datetime 和 datetime.timedelta ,另外两个 datetime.date 和 datetime.time 实际使用和 datetime.datetime 并无太大差别。 下面主要讲讲 datetime.datetime 的使用。使用datetime.datetime.now()可以获得当前时刻的datetime.datetime 实例。 对于一个 datetime.datetime 实例,主要会有以下属性及常用方法,看名称就能理解,应该没有太大问题:
datetime.year
datetime.month
datetime.day
datetime.hour
datetime.minute
datetime.second
datetime.microsecond
datetime.tzinfo
datetime.date() # 返回 date 对象
datetime.time() # 返回 time 对象
datetime.replace(name=value) # 前面所述各项属性是 read-only 的,需要此方法才可更改
datetime.timetuple() # 返回time.struct_time 对象
dattime.strftime(format) # 按照 format 进行格式化输出
...
除了实例本身具有的方法,类本身也提供了很多好用的方法:
datetime.today()a # 当前时间,localtime
datetime.now([tz]) # 当前时间默认 localtime
datetime.utcnow() # UTC 时间
datetime.fromtimestamp(timestamp[, tz]) # 由 Unix Timestamp 构建对象
datetime.strptime(date_string, format) # 给定时间格式解析字符串
...
请注意,上面省略了很多和时区相关的函数,如需使用请查文档。对于日期的计算,使用timedelta也算是比较简单的:
In [1]: import datetime
In [2]: time_now = datetime.datetime.now()
In [3]: time_now
Out[3]: datetime.datetime(2014, 10, 27, 21, 46, 16, 657523)
In [4]: delta1 = datetime.timedelta(hours=25)
In [5]: print(time_now + delta1)
2014-10-28 22:46:16.657523
In [6]: print(time_now - delta1)
2014-10-26 20:46:16.657523
甚至两个 datetime 对象直接相减就能获得一个 timedelta 对象。如果有需要计算工作日的需求,可以使用 business_calendar这个库,不需要装其他依赖就可使用。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23