京公网安备 11010802034615号
经营许可证编号:京B2-20210330
给师弟师妹们学习数据挖掘的一些建议
看着刚进实验室的师弟师妹们的迷茫,虽然也与他们进行过一些零散的交谈,但是都不够系统。因此,根据自己的经历给出学习数据挖掘的一些建议,大家可以根据自身的情况,具体问题具体分析,作为参考。希望在上一届的基础上,走的更深,走的更远。
一. 读研与数据挖掘基础
首先介绍一下大家都比较关心的几个问题,包括我们组的研究方向是什么,论文相关问题,大数据与工作相关问题,上海户口问题几个方面。
1. 我们组的研究方向是什么
我们组大的研究方向是数据挖掘,论文的研究方向是推荐算法。要注意大的研究方向,论文的研究方向与工作方向的区别和联系。
2. 论文相关问题
读研究生免不了会思考一个问题,读研的意义是什么?我自己认为读研的最大意义是训练自己系统化的严谨的分析思维能力。在导师给定论文研究方向后,如何确立更细的研究方向,如何检索资料,如何阅读英文论文,如何提出自己的创新点,如何做实验,如何写论文,如何修改论文,如何投稿,如何退修,如果是国际会议,还要去做英文口头报告,与同行交流等,这些问题都是需要自己去思考的。
3. 大数据与工作相关问题
数据挖掘属于大数据专业吗?当然属于。现在大数据找工作相对还是比较理想的。关键是要学习哪些课程呢?以前给大家推荐了很多的书籍,但是效果却恰恰相反,因为实在太多了根本看不完,更不知阅读书籍的顺序,浅尝辄止,最后一本书也没有看完,研究生就结束了。
(1)最低保障书籍
无论将来做什么,熟练掌握一门编程语言,一个数据库,数据结构,算法都是必备的。
《高性能MySQL》
《数据结构与算法分析:Java语言描述》
《算法》:http://book.douban.com/subject/19952400/
(2)Python与机器学习
《集体智慧编程》
《社交网站的数据挖掘与分析》
《数据挖掘:概念与技术》
Python官方文档:https://www.python.org/
Scikit-Learn官方文档:http://scikit-learn.org/stable/
(3)Java相关书籍
《Java开发实战经典》
《Java Web开发实战经典》
《Java虚拟机规范》
Java SE:http://docs.oracle.com/javase/8/docs/api/
Java EE:http://docs.oracle.com/javaee/6/api/
(4)Hadoop与Spark书籍
《大数据日知录:架构与算法》
《Hadoop权威指南》
《大数据Spark企业级实战》
《Scala编程》
Hadoop官方网站:http://spark.apache.org/
Spark官方网站:http://spark.apache.org/
Scala官方网站:http://www.scala-lang.org/
说明:认准目标,耐住性子,一步一步往前走。要把上面推荐的书籍硬着头皮读完,数据挖掘基本也就算是入门了。
4. 上海户口问题
上海户口属于积分制,如果想要在校期间就拿到,那么唯一的方式就是参数每年的研究生数据建模比赛,并且获奖。获奖比例还是很高的。其实,好好学习Python,买本数学建模的书籍看完,看几篇近些年来的获奖论文,比赛时硬着头皮钻研一道题目并且写好论文,基本上都可以获奖。
二. 数据挖掘进阶
数据挖掘涉及多个方向,但是通常从数学统计,数据库和数据仓库,机器学习三个方向来进行研究。当我想学习一个方向的时候,最希望做的事情就是让别人给我列出一个书单。因为我也会给你们列出一个书单,让你们慢慢研究吧。
1. 数学统计
(1)理论数学:复变函数,实变函数,泛函分析,拓扑学,积分变换,微分流形,常微分方程,偏微分方程等。
(2)应用数学:离散数学(集合,逻辑,组合,代数,图论,数论),具体数学,张量分析,数值计算,矩阵论,逼近论,运筹学,凸优化,小波变换,时间序列分析等。
(3)概率:概率论,测度论,随机过程等。
(4)统计:统计学,多元统计,贝叶斯统计,统计模拟,非参数统计,参数统计等。
2. 数据库和数据仓库
《数据库系统概念》
《数据库系统实现》
《数据仓库》
《分布式系统:概念与设计》
3. 机器学习
通信原理;数据挖掘;机器学习;统计学习;自然语言处理;信息检索;模式识别;人工智能;图形图像;机器视觉;语音识别;机器人学等。(这方面的经典书籍都可以看看,后面慢慢补充)
4. 其它书籍
(1)Linux
(2)网络原理,编译原理,组成原理,
(3)JVM
(4)UML
(5)软件工程
(6)设计模式
(7)云计算与Docker
(8)并行计算
(9)需求分析
三. 学习与方法
作为一名软件工程师,需要熟练掌握的工具,如下所示:
(1)博客
除了学习之外,更要思考和总结,把还没有忘却的记忆缓存序列化成为文字,记录在博客中。
(2)语言
大数据常用的语言包括Java,Scala,Python。如果一定要选择精通一门语言,自己选择Scala,同时深度学习JVM。(3)开发工具
自己选择IntelliJ IDEA用于Java和Scala的开发,Eclipse用于Python的开发。
(4)GitHub
每天都要坚持编程,主动参与开源项目。
(5)Linux
工作常用的是Ubuntu 12.04 LTS。
由于时间原因,上面总结的还比较粗糙,算是第一个版本吧,后面还会继续深度总结和完善。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题, ...
2026-01-05在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、 ...
2026-01-04在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有 ...
2026-01-04在CDA(Certified Data Analyst)数据分析师的工作链路中,数据读取是连接原始数据与后续分析的关键桥梁。如果说数据采集是“获 ...
2026-01-04尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26