京公网安备 11010802034615号
经营许可证编号:京B2-20210330
R语言-批量读取数据文件以及提取字符串中的数字
#第一部分
#先将当前文件夹下的所有以csv结尾的文件名读进来
filelist <- list.files(pattern=".*.csv")
#文件个数
m<-length(filelist)
#按照文件名逐个读入数据,得到数据列表
datalist <- lapply(filelist, function(x) read.csv(x,header=F,stringsAsFactors=F))
#第二部分
library(stringr)#没装的请先安装
cha1<-c("a1","b23","c4","d56","e","f4")#这是6个字符串,每个字符串里面都包含数字,考虑如何把数字提取出来
col1<-str_extract_all(cha1,"\\d")#得到字符串列表,每个元素对应每个字符串的数字,但是不是你想象的那样
#具体形式是这样的:如23,得到的是"2" "3",所以该怎样把它变成我们想要的数字23是个问题,解决方法如下:
i<-1
while(i<=length(col1)){
if(length(col1[[i]])==0) col1<-col1[-i] else i<-i+1#这一步是考虑把没有数字的字符串对应的列表元素删掉,比如说"e"
}
col11<-numeric(length(col1))
for(i in 1:length(col1)){
l1<-length(col1[[i]])
l11<-c()
for(j in 1:l1)
l11<-paste(l11,col1[[i]][j],sep="")#将列表的每个元素连接起来,比如"2" "3"就变成了字符串"23"
col11[i]<-as.numeric(l11)#再将链接好的字符串进行数值化
}
col11<-col11[!duplicated(col11)]#有的数字在处理之后,即将字母去掉之后会有所重复,这步是向量去重处理(不需要去重的请忽略哈)
#补充两个个函数:
#1.删除字符串中的特定字符
gsub(a,b,c):将字符串c中的a字符用b字符进行替换,例如:
gsub(" ","","Lin hai")#这样可以删除字符串中的空格
#2.读取excel数据时指定行和列进行读取
library(data.table)
data1 <- fread("数据.csv", skip=1, nrows=100, select=c(1:50),data.table=F,header=F) #读取前五十列,前一百行
#其中skip是起始行,nrows是终止行,select是所要读取的列号(也可以写成列名,如select=c("X1", "X2"),表示读取列名为X1,X2的变量)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31