
大数据叩开智能制造之门 引领企业大步迈向卓越
“数据是新的石油,是本世纪最为珍贵的财产”,谁掌控了数据,谁就掌控了主动,谁就能够在万象更新、瞬息万变的新时代“运筹帷幄、决胜千里”,我们已经进入了一个前所未有、无法回避的大数据时代,导航适时避阻、广告精准推送、案件快速侦破、车辆无人驾驶……无一不是数据在其中大显神通。
车辆无人驾驶
在工业4.0和中国制造2025背景下,企业内部数据的广泛获取和有效利用也正在变得愈加迫切、重要,数据驱动决策、数据驱动流程、数据驱动产品、数据驱动业务,数据已经成为企业赖以生存发展和难以割舍的一部分,大数据推动企业进步、促进企业发展,驱动着企业快速蜕变和未来制胜。
互联网、物联网、大数据、云计算使我们具备了掌控数据、利用数据的能力,但实施的基础是组建网络和采集数据,否则就是“空谈”或不接地气的“空中楼阁”。自动化、信息化、网络化、智能化是企业智能制造的四个层次,唯有实施深度的两化融合,使智能装备、智能感知、工业软件能够通过工业以太网深度交融和高度协同,人、机、系统实现信息共享、互联互通,才能使系统具备较强的数据采集与分析处理能力,才能真正指导企业实现智能化高效运营,才能真正引领企业超凡脱俗、做大做强,使企业具备迈向高端、走向卓越的潜能,否则智能制造可能只是一种空响的口号而已,犹如“雨后彩虹”,来也匆匆、去也匆匆,或者劳民伤财、徒有虚名。
大数据
一个企业如果获取数据信息手段匮乏,并且信息零散、杂乱,难以实现对数据的全面掌控和轻松驾驭,同时数据驱动的目标不清晰,那么推进智能制造工作所面临的阻力肯定也就非常艰巨,因此要达到系统的智能化,必须要从获取有效的数据开始,首先设备要达到必备的数控化率,并且所要采集的数据要有相应的传感或感知系统,然后就是运用网络化和信息化技术将设备组网,以及对数据进行采集归纳和智能分析。
生产线的设备组网可以通过数据采集与工业软件的智能算法,使系统具备自动输出设备开动率、有效利用率、故障预警信息、维护保养提醒等功能,可及时发现车间现场所存在的短板、瓶颈、问题工序,用于指导和改善生产运营综合管理水平,并且可以指导生产资源的最优化配置。同时可以对关特工序、质控点的工艺参数进行全程监控,并且对变化趋势进行直观分析,当接近极限值或超出工艺控制范围时,提供声光预警或APP推送信息以便及时进行人工干预,确保生产线质量保障能力达到可控、稳定状态。
汽车制造生产线的AVI系统已经成为行业的标准配置,通过RFID载码体技术或二维码扫描技术,对车辆信息进行适时跟踪,AVI系统所获取的数据对于生产线车辆的全程监视、计划调度、节拍平衡分析具有举足轻重的作用。并且可以在中控室通过实时呈现的全景动态画面,监视各工序/工位的过车情况及车辆的在线状态,可自动输出各工序适时完工计划及快速查询车辆的具体位置,为物料配送提供精准的车辆状态信息,便于提前储备物料,也可以实现车辆在缓存区的自动排序及自动转运。更为关键的是,通过统计各车型、各工序、各时段的生产情况,便于快速曝露和精准分析车间瓶颈问题,有利于优化生产资源配置。
数据是如今最宝贵的资源,数据所扮演的角色日渐重要,数据的高效利用对企业所带来的价值也是不可估量的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23