京公网安备 11010802034615号
经营许可证编号:京B2-20210330
别以为你是技术开发人员就可以不会大数据
要处理大数据,开发人员需要了解他们正在处理的业务问题,以及部署架构和数据。为了了解大数据,我们采访了21家公司的22位高管,他们正在帮助客户管理和优化他们的数据,以推动业务价值。我们的问题是:开发者在大数据项目上需要什么技能?以下是他们的的答案。
了解业务问题
1. 从数据中心的角度来看工作。你有什么数据、你想知道什么、你要怎么填补空白来解决问题?
2. 开发人员需要各种技能来处理大数据项目,其中包括以下三项至关重要的技能:A. 清楚地了解公司内部的业务目标范围,以及这些技术如何与各种技术保持一致。B. 在应用程序的中,开发人员需要了解他们正在处理的数据集的商业价值。C. 开发人员作为一个组织的一部分,需要有能够构建和管理一个应用程序的能力。
3. 了解用例并找出最佳解决方案堆栈。培养核心基础人才。理解数学结构、框架和模型。了解业务应用程序 ---如何将信息用于业务。有许多工具可以直观地减少初始难度。正如上述,技能的完美结合涉及统计、数学知识、数据建模经验、编程经验以及商业领域的敏锐度。尽管找到具有完美技能组合的个人(一名真正的数据科学家)是相当难得的,但某些工具集和系统可以减轻对编程经验的需求,帮助数据建模部分,甚至减少对深入了解预测背后的数学模型。
部署体系结构
1. 未来是AI / ML的,同时也别忘了微服务。在云中与AI / ML工具结合起来,这需要不同的、更大的愿景。
2. 了解云、微服务、本地分布和安全性。
3. 了解流行的开源系统的架构,跟上趋势。
4. 系统架构、软件工程、机器学习以及高级分析。
数据
1. 虽然开发人员掌握了开发流程,但为了扩展平台将会帮助理解Kafka。你不必手动完成所有的编码工作,将会有其他工具来消除连接性问题。
2. 利用数据结构来简化流程。使用数据作为容器和微服务的一般资源。智能制造更有针对性和反应性的过程。看质量问题和根本原因。让工作更容易,这样他们就能做出更多的贡献。
3. 集成资源来构建应用程序和推荐引擎。补充软件堆栈、ML库和计算资源。结构化数据,使其易于使用。
4. 拥抱非关系数据模型,如文档和半结构化。为了分析的目的,经常需要对数据进行非规范化处理。
5. 理解结构、维度和变量的基本数据词汇。了解一个给定的变量可以做什么样的分析。
6. 如何处理大规模的数据。多用户的并发性应用程序开发人员可以快速获取语言了解数据生态系统的工作原理。
7. 开发人员需要使用编程语言、概率和统计,应用数学和算法来获得机器学习的上升趋势。他们还需要了解数据的上下文,最终用户将如何使用数据,以及如何重用数据。他们需要考虑分布式计算和架构,将数据管理恰当地分离到不同的区域,以保持大数据架构的组织性,敏捷性和安全性。DevOps原则也需要被应用到。通过参与整个软件交付流程,数据专家可以帮助其他团队了解软件在生产中面临的数据挑战类型。
8. 数据工程和数据科学是一个大的分支。虽然对数据科学的基本知识只需要有所掌握,但对不同数据技术的深入了解却是必要的。尽管NoSQL很受欢迎,但SQL仍然是查询数据的标准。开发人员需要了解不同的部署选项——云本地、容器和流行的部署选项。对数据库和系统概念(如一致性保证、事务边界、系统体系结构、保证和职责等)的良好理解将帮助开发人员了解环境、对技术进行分类、并识别他们应该研究的技术。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22