
数据工程师,解救混乱大数据中的数据科学家
最近《福布斯》发表了一篇关于对2018“人工智能、大数据和分析”10大预测的文章中指出,数据工程师即将取代数据科学家的角色,成为炙手可热的新一代职位。Gil Press写道,Indeed.com上有13%的岗位是关于数据工程师的,而数据科学家所占的比例还不到1%。
有趣的是,笔者在LinkedIn上查到如亚马逊和Facebook这样的领先数据驱动公司发布的数据工程师职位描述。具备数据抽取、转换、加载(ETL)流程和数据管道建设专业知识的全面了解,丰富的数据仓库技能,是理想数据工程师的必备和基本素质。
什么是数据工程师?
如果建筑工程涉及到建筑、道路和轨道等物理基础设施的设计、规划、建设和管理,数据工程也要应用同样复杂的数据。
数据工程师计划、设计、构建和维护一个可靠的体系架构,以确保稳定的清洁和结构化数据流,以便进行进一步分析,并适用于生产环境。
数据工程之所以越来越引人注目,是因为企业被大量非结构化的有价值的商业信息数据所淹没了。
随着数据科学家和公民数据科学的统计和编程能力开始激增,管理和维护大量的数据成了他们共同的痛点。分析和构建模型的数据科学家,近80%的时间都花费在查找和清理数据。
数据工程师通过了解企业所需的数据、识别相关的新数据源、提取可用的格式数据,确保数据不出错并将数据加载到数据科学家和分析师的工作中,从而实现对数据的救援计划。
数据工程师必备工具集
数据工程师的工作内容常常与数据架构师、数据库管理员和软件工程师的工作重叠,这意味着他们需要预先熟悉这些工作的内容。数据架构师或管理员只局限于数据基础架构的规划和维护的位置上,但从起源到最终分析展览的过程中,数据工程师都要参与在内。
因此,数据工程师的技能包括:
* 精通R或Python编程
* 强大的SQL技能
* 基于Hadoop的技术,如MapReduce、Hive和Pig
除上述以外,数据工程师还应为传统的ETL过程提供新的重新配置选项。在并行处理方法之后,为复制数据构建数据管道,将其转移到存储解决方案上,重新格式化和加入数据。
随着多条数据流水线开始出现,Airflow和Luigi等开源工作流管理工具可用于创建和监控数据流水线。因此,对这些工具的了解又是一个优势。数据工程师也可以使用机器学习来自动化数据管道流程。
数据准备 —— 主要标准
数据的清洁度和质量越好,建模的效果越好,这就是从训练模型中得出的见解。
Urthecast的数据工程师David Bianco解释说,数据工程师的最终目标是向需要的人提供干净、可用的数据。这种收集、清理、处理和整合数据的方法被称为数据准备或数据处理。
数据分析中的两个主要数据问题。
小(无)或大数据问题:数据工程师应该在公司内外寻找新的数据来源。没有足够的数据来源,分析师和数据科学家会很难建立培训模式。相反,大数据集也可能很难处理,而且“垃圾进,垃圾出”是数据科学中一个残酷的现实。
杂乱的数据问题:一旦确定了数据源,就需要对元数据进行编目和组织,定义数据提取方法。Airbnb的数据工程师Maxime Beauchemin把数据工程师称为数据仓库的“图书管理员”,他们把凌乱的数据梳理好。相互冲突的术语和不一致的数据会使整个流程变得拖沓。
尽管大多数数据看起来微不足道,但提炼和清洗后的数据却能产生大价值。
为数据工程师减轻数据准备压力
数据准备工作可能很乏味,但是如果正确使用了自动化和工具,将会节省不少时间。在R / Python编程方面的专业知识,有助于简化他们在自动化方面的工作。
数据冠层正在以前所未有的速度扩张,越来越有趣也越来越混乱。数据工程师的职责就是清理混乱的数据生态系统,为所有人提供一个健康的数据集。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09