京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Python中实现参数类型检查的简单方法
Python是一门弱类型语言,很多从C/C++转过来的朋友起初不是很适应。比如,在声明一个函数时,不能指定参数的类型。用C做类比,那就是所有参数都是void*类型!void类型强制转换在C++中被广泛地认为是个坏习惯,不到万不得已是不会使用的。
Python自然没有类型强制转换一说了,因为它是动态语言。首先,所有对象都从Object继承而来,其次,它有强大的内省,如果调用某个不存在的方法会有异常抛出。大多数情况,我们都不需要做参数类型栓查,除了一些特殊情况。例如,某个函数接受一个str类型,结果在实际调用时传入的是unicode,测试过程中又没有代码覆盖到,这样问题就比较严重了。解决方法也很简单,借助Python的内省,很容易就能判断出参数的类型。但是每个地方都写检查代码会很累赘,何况它带来的实际价值并不高。一个好的解决方法是使用装饰器。
'''
>>> NONE, MEDIUM, STRONG = 0, 1, 2
>>>
>>> @accepts(int, int, int)
... def average(x, y, z):
... return (x + y + z) / 2
...
>>> average(5.5, 10, 15.0)
TypeWarning: 'average' method accepts (int, int, int), but was given
(float, int, float)
15.25
'''
def accepts(*types, **kw):
""" Function decorator. Checks that inputs given to decorated function
are of the expected type.
Parameters:
types -- The expected types of the inputs to the decorated function.
Must specify type for each parameter.
kw -- Optional specification of 'debug' level (this is the only valid
keyword argument, no other should be given).
debug = ( 0 | 1 | 2 )
"""
if not kw:
# default level: MEDIUM
debug = 1
else:
debug = kw['debug']
try:
def decorator(f):
def newf(*args):
if debug == 0:
return f(*args)
assert len(args) == len(types)
argtypes = tuple(map(type, args))
if argtypes != types:
msg = info(f.__name__, types, argtypes, 0)
if debug == 1:
print >> sys.stderr, 'TypeWarning: ', msg
elif debug == 2:
raise TypeError, msg
return f(*args)
newf.__name__ = f.__name__
return newf
return decorator
except KeyError, key:
raise KeyError, key + "is not a valid keyword argument"
except TypeError, msg:
raise TypeError, msg
def info(fname, expected, actual, flag):
""" Convenience function returns nicely formatted error/warning msg. """
format = lambda types: ', '.join([str(t).split("'")[1] for t in types])
expected, actual = format(expected), format(actual)
msg = "'%s' method " % fname \
+ ("accepts", "returns")[flag] + " (%s), but " % expected\
+ ("was given", "result is")[flag] + " (%s)" % actual
return msg
本质上讲,这也是一种运行时检查,但效果已经不错了
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01