京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大白话讲解数据挖掘【案例】潜客模型的数据框架
本篇文章作为回答很多朋友问我的一个问题:到底数据挖掘是什么?有什么作用?
我把数据挖掘比喻成炒菜烧饭。下面用了一个潜客模型的框架作为案例进行讲解。
(潜客模型数据挖掘框架)
因为我在互联网公司,所以流量是整个流程图的开始。
第一步:数据准备(去菜场买食材,到家清洗食材)
第二步:做模型(将食材加工成各类食物,咸味、甜味、淡味)
第三步:数据CRM系统营销管理(把不同的食物分给不同的人吃)
第四步:做评估(反馈不同人群对菜的评价,反馈给厨师,厨师根据反馈再做改进)
可以看到数据挖掘非常类似厨师的工作。我们来细细得看一下每一步大概要考虑什么问题?如何去解决吧?
第一步:数据准备
问题:
1、怎么收集用户信息? (去哪里买食材)
收集用户信息可以是非常多的形式,但我们不可能无限制得到用户信息,那是非常浪费资源并且也会让用户认为我们不友好。(就比如你在上海不会飞去北京买烤鸭吧?)所以使用哪些用户信息这个问题就非常关键。
2、应该使用哪些用户信息? (买哪些食材)
通常我们会把所有的一些字段都罗列出来(附近菜场能买到的食材全部记录下来),然后用于模型软件和建模专家去评估哪些字段是有用的(去看哪些能做出菜品的),哪些字段可能对于模型没有任何作用。目前较为流行的就是用户的交互信息,因为这些信息最不易作假,来源也最方便。
第二步:做模型
问题:如何建模?(如何烧菜)
建模其实就是将你手中的信息量折合成你需要的信息。(把几个食材加工后变成红烧肉)。比如要预测这个用户是否要流失,你可以用最近用户的交易习惯是否有巨大的改变,这时我们做模型可能只需要几个关键变量(食材)。从原来的几百个关键变量到最后的几个关键变量,然后把他们组合起来这一个过程就是建模的过程。(选食材到做出美味的美食的过程)
做模型其实是一件非常耗费时间的事情,因为在没有专业化软件的时候,大家做模型就是靠业务经验及一遍遍的数据组合去完成的。而现在专业化的工具如R,SAS,SPSS等其实是提高了建模师的工作效率,让他们繁琐且重复化的工作由计算机完成。当然在你使用这些软件的同时,你必须了解每一种数学模型背后的原理,这样你才明白什么时候用什么模型。(数学模型就好像油盐酱醋,要知道什么时候用什么,最终才能做出美味)
做完模型后,有时你需要把你的模型解释给业务部门听,然后告诉他们如何使用你的模型,因为帮助解决问题才是模型的最终目标。
第三步:数据CRM系统营销管理
当我们把每个顾客的菜做好了,我们需要对不同的顾客满足不同的需求,这时就用到了CRM系统,如下图所示,可以根据模型进行营销,检测最后是否解决了业务问题。
CRM具有以下优势:
1、在营销之前你就可以预算营销成本。
2、针对不同用户使用不同的营销策略(常说的精确化营销)
3、易于检测营销和模型结果
第四步:结果反馈及模型优化
重要结果反馈KPI:(只例举部分)
正向反馈:1、用户再次访问客户端或网站的概率
2、用户上线下单购买产品概率
反向反馈:1、退订率(E-mail APP)
2、投诉率
3、未响应度(未采取任何动作)
根据不同类型的人群进行的反馈结果再次检验模型(顾客的口味评价),查看模型的准确度是否在可控范围内。很多模型随着时间推移都会变得不准确,需要调整一定的阀值。比如银行的风控模型,通常都会半年到1年调整一次(厨师根据顾客喜好调整口味)。其中的原因可能是经济条件增长原因,也可以能是银行政策原因导致。
总结项目关键点:
1、 收集用户的信息质量(业务及BI部门合作)
2、 算法优化处理(建模工程师)
3、 系统实施跟进(BI及IT开发部门合作)
这些因素决定模型应用的成败。
PS:数据挖掘有很多有意思的应用,典型的亚马逊推荐算法;啤酒与尿布;预测;语音识别的原理中也有概率数据挖掘的影子(推荐阅读《数学之美》)。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27