
机器学习模型评价指标及R实现
1.ROC曲线
考虑一个二分问题,即将实例分成正类(positive)或负类(negative)。对一个二分问题来说,会出现四种情况。如果一个实例是正类并且也被
预测成正类,即为真正类(True positive),如果实例是负类被预测成正类,称之为假正类(False
positive)。相应地,如果实例是负类被预测成负类,称之为真负类(True negative),正类被预测成负类则为假负类(false
negative)。
列联表如下表所示,1代表正类,0代表负类。
真正类率(true positive rate ,TPR), 也称为 Sensitivity,计算公式为TPR=TP/ (TP+ FN),刻画的是分类器所识别出的 正实例占所有正实例的比例。
假正类率(false positive rate, FPR),计算公式为FPR= FP / (FP + TN),计算的是分类器错认为正类的负实例占所有负实例的比例。
真负类率(True Negative Rate,TNR),也称为specificity,计算公式为TNR=TN/ (FP+ TN) = 1 - FPR。 在一个二分类模型中,对于所得到的连续结果,假设已确定一个阈值,比如说 0.6,大于这个值的实例划归为正类,小于这个值则划到负类中。如果减小阈值,减到0.5,固然能识别出更多的正类,也就是提高了识别出的正例占所有正例的比例,即TPR,但同时也将更多的负实例当作了正实例,即提高了FPR。为了形象化这一变化,在此引入ROC。
ROC曲线正是由两个变量1-specificity(x轴) 和 Sensitivity(y轴)绘制的,其中1-specificity为FPR,Sensitivity为TPR。随着阈值的改变,就能得到每个阈值所对应的1-specificity和Sensitivity,最后绘制成图像。
该图像的面积如果越接近1,那么我们则认为该分类器效果越好。从直觉上来说,假设我们的预测全部100%正确,那么不管阈值怎么变(除了阈值等于0和1时),我们的Sensitivity(真正类)率永远等于1,1-specificity(1-真负类率)永远等于0,所以该图就是个正方形,面积为1,效果最好。
样例数据集:
library(ROCR)
data(ROCR.simple)
ROCR.simple<-as.data.frame(ROCR.simple)
head(ROCR.simple)
# predictions labels
# 1 0.6125478 1
# 2 0.3642710 1
# 3 0.4321361 0
# 4 0.1402911 0
# 5 0.3848959 0
# 6 0.2444155 1
绘制ROC图:
pred <- prediction(ROCR.simple$predictions, ROCR.simple$labels)
perf <- performance(pred,"tpr","fpr")
plot(perf,colorize=TRUE)
2.AUC值
AUC值就是ROC曲线下的面积,可以通过以下代码计算:
pred <- prediction(ROCR.simple$predictions, ROCR.simple$labels)
auc.tmp <- performance(pred,"auc")
auc <- as.numeric(auc.tmp@y.values)
3.Recall-Precision(PR)曲线
同样是一个二分类的模型的列联表,我们可以定义:
然后我们通过计算不同的阈值,以Recall为X轴,Precision为Y轴绘制图像。
PR图可以有这样的应用,引用一个例子[1]:
1. 地震的预测
对于地震的预测,我们希望的是RECALL非常高,也就是说每次地震我们都希望预测出来。这个时候我们可以牺牲PRECISION。情愿发出1000次警报,把10次地震都预测正确了;也不要预测100次对了8次漏了两次。
2. 嫌疑人定罪
基于不错怪一个好人的原则,对于嫌疑人的定罪我们希望是非常准确的。及时有时候放过了一些罪犯(recall低),但也是值得的。
对于分类器来说,本质上是给一个概率,此时,我们再选择一个CUTOFF点(阀值),高于这个点的判正,低于的判负。那么这个点的选择就需要结合你的具体场景去选择。反过来,场景会决定训练模型时的标准,比如第一个场景中,我们就只看RECALL=99.9999%(地震全中)时的PRECISION,其他指标就变得没有了意义。
绘制代码:
pred <- prediction(ROCR.simple$predictions, ROCR.simple$labels)
RP.perf <- performance(pred, "prec", "rec")
plot (RP.perf)
#查看阈值为0.1,0.5,0.9下的召回率和精确率
plot(RP.perf, colorize=T, colorkey.pos="top",
print.cutoffs.at=c(0.1,0.5,0.9), text.cex=1,
text.adj=c(1.2, 1.2), lwd=2)
一般这曲线越靠上,则认为模型越好。对于这个曲线的评价,我们可以使用F分数来描述它。就像ROC使用AUC来描述一样。
4.F1分数
Fβ
分数定义如下:
我们可以使用R计算F1分数:
pred <- prediction(ROCR.simple$predictions, ROCR.simple$labels)
f.perf <- performance(pred, "f")
plot(f.perf) #横坐标为阈值的取值
5.均方根误差RMSE
回归模型中最常用的评价模型便是RMSE(root mean square error,平方根误差),其又被称为RMSD(root mean square deviation),其定义如下:
其中,yi是第i个样本的真实值,y^i是第i个样本的预测值,n是样本的个数。该评价指标使用的便是欧式距离。
RMSE虽然广为使用,但是其存在一些缺点,因为它是使用平均误差,而平均值对异常点(outliers)较敏感,如果回归器对某个点的回归值很不理性,那么它的误差则较大,从而会对RMSE的值有较大影响,即平均值是非鲁棒的。 所以有的时候我们会先剔除掉异常值,然后再计算RMSE。
R语言中RMSE计算代码如下:
pred <- prediction(ROCR.simple$predictions, ROCR.simple$labels)
rmse.tmp<-performance(pred, "rmse")
rmse<-rmse.tmp@y.values
6.SAR
SAR是一个结合了各类评价指标,想要使得评价更具有鲁棒性的指标。(cf. Caruana R., ROCAI2004):
其中准确率(Accuracy)是指在分类中,使用测试集对模型进行分类,分类正确的记录个数占总记录个数的比例:
pred <- prediction(ROCR.simple$predictions, ROCR.simple$labels)
sar.perf<-performance(pred, "sar")
7.多分类的AUC[5]
将二类 AUC 方法直接扩展到多类分类评估中, 存在表述空间维数高、复杂性大的问题。 一般采用将多类分类转成多个二类分类的思想, 用二类 AUC 方法来评估多类分类器的性能。Fawcett 根据这种思想提出了 F- AUC 方法[4], 该评估模型如下
其中AUC(i,rest)是计算 用 ” 1- a- r”方 法 得 到 的 每 个 二 类 分 类器的 AUC 值,“ 1- a- r”方法思想是 k 类分类问题构造 k 个二类分类器, 第 i 个二类分类器中用第 i 类的训练样本作为正例, 其他所有样本作为负例。 p ( i) 是计算每个类在所有样本中占有的比例,
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15