京公网安备 11010802034615号
经营许可证编号:京B2-20210330
这是一张灵异事件图。。。开个玩笑,这就是一张普通的图片。
毫无疑问,上面的那副图画看起来像一幅电脑背景图片。这些都归功于我的妹妹,她能够将一些看上去奇怪的东西变得十分吸引眼球。然而,我们生活在数字图片的年代,我们也很少去想这些图片是在怎么存储在存储器上的或者去想这些图片是如何通过各种变化生成的。
在这篇文章中,我将带着你了解一些基本的图片特征处理。data massaging
依然是一样的:特征提取,但是这里我们还需要对跟多的密集数据进行处理,但同时数据清理是在数据库、表、文本等中进行。这是如何对图片进行处理的呢?我们将看到图片是怎么存储在硬盘中的,同时我们可以通过使用基本的操作来处理图片。
导入图片
在python中导入图片是非常容易的。下面的代码就是python如何导入代码的:
代码解释:
这幅图片有一些颜色和许多像素组成,为了形象这幅图片是如何存储的,把每一个像素想象成矩阵中的每一个元素。现在这些元素包含三个不同的密度信息,分别为颜色红、绿、蓝(RGB)。所以一个RGB的图片就变成了三维的矩阵。每一个数字就是颜色的密度(RGB)
让我们来看看一些转化:
就像你在上面看到的一样,我们对三个颜色维度进行了一些操作转变。黄色不是一种直接表示的颜色,它是红色和绿色的组合色。我们通过设置其他颜色密度值为零而得到了这些变化。
将图像转换为二维矩阵
处理图像的三维色有时可能是很复杂和冗余的。如果我们压缩图像为二维矩阵,在特征提取后,它将变得更简单。这是通过灰度图像或二值化(Binarizing)图像。当图片显示为不同灰色强度组合时灰度图像比二值化(Binarizing)图像颜色更加饱满,而二值化(binarzing)只是简单的构建一个充满0和1的二维矩阵而已。
这里将叫你如何将RGB图片转变成灰度图像:
就如你所见,图片的维度已经降为了两种灰度值了,然而图片的特征在两幅图片中依然清晰可见。这就是为什么灰色图像在硬盘上存贮更加节约空间。
现在让我们来二值化灰色图像,这是通过找到阀值和灰色度像素标志(flagging the pixels of Grayscale)。在这篇文章中我已经通过Otsu‘s方法来找到阀值的,Otsu‘s方法是通过最大化两类不同像素点之间的距离来计算最优阀值的,也就是说这个阀值最小化了同类间的变量值。
模糊化图片
本文最后部分我们将介绍更多有关特征提取的内容:图像模糊。灰度或二值图像有时需要捕获更多的图像而模糊图像在这样的场景下是非常方便的。例如,在这张图片如果铁路轨道比鞋子更加重要,模糊处理将会添加跟多的值。从这个例子中我们对模糊处理变得更清晰。模糊算法需要将邻近像素的加权平均值加到周围每个颜色像素中。下面是一个模糊处理的例子:
对上面的照片模糊处理后,我们清楚地看到鞋已经与铁路轨道具有相同的密度等级。因此,在许多场景中这种技术非常方便。
让我们看一个实际例子。我们想在一个小镇的照片上统计的人数。但是照片上还有一些建筑图像。现在建筑背后的人的颜色强度会低于建筑本身。因此,这些人我们就难以计数。模糊处理场景后才能平衡建筑和人在图像中的颜色强度。
完整的代码:
image = imread(r"C:\Users\Tavish\Desktop\7.jpg")
show_img(image)
red, yellow = image.copy(), image.copy()
red[:,:,(1,2)] = 0
yellow[:,:,2]=0
show_images(images=[red,yellow], titles=['Red Intensity','Yellow Intensity'])
from skimage.color import rgb2gray
gray_image = rgb2gray(image)
show_images(images=[image,gray_image],titles=["Color","Grayscale"])
print "Colored image shape:", image.shape
print "Grayscale image shape:", gray_image.shape
from skimage.filter import threshold_otsu
thresh = threshold_otsu(gray_image)
binary = gray_image > thresh
show_images(images=[gray_image,binary_image,binary],titles=["Grayscale","Otsu Binary"])
from skimage.filter import gaussian_filter
blurred_image = gaussian_filter(gray_image,sigma=20)
show_images(images=[gray_image,blurred_image],titles=["Gray Image","20 Sigma Blur"])
总结
以上就是本文关于python实现图片处理和特征提取详解的全部内容,希望对大家有所帮助
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04