
数据之和的价值远大于数据的价值之和
在宽带化、移动互联网、物联网、社交网络、云计算的催生下,一个大数据的时代,不经意间顺理成章地翩然而至。不久前,沣西大数据产业园悄然落户陕西省西咸新区,发展大数据产业正在“试水”。
全球数据总量在以每两年翻一番的速度增长
从事广告文化创意行业的何先生,清晰地记得,从12年前购买的仅有20GB硬盘容量的家用计算机,到为满足使用需求而不断扩容的80GB、120GB、250GB、500GB的主机存储空间,变化很快。“如今2TB的硬盘都不够用,还得靠移动存储设备来备份。”
根据IDC(国际数据公司)的监测统计,2011年全球数据总量已经达到1.8ZB(1ZB等于1万亿GB,1.8ZB也就相当于18亿个1TB的移动硬盘),而这个数值还在以每两年翻一番的速度增长,预计到2020年全球将总共拥有35ZB的数据量,增长近20倍。
由于数据规模的急剧膨胀,各行业累积的数据量越来越巨大,数据类型也越来越多、越来越复杂,已经超越了传统数据管理系统、处理模式的能力范围,于是“大数据”这样一个在含义上趋近于“无穷大”的概念才会应运而生。
“首先在于体量大,是一个数据全集的概念”,国家工信部软件服务业司司长陈伟为大数据概括出四方面特征,“第二是类型多,包括结构化数据、半结构化数据、非结构化数据等多种类型,其中视频数据在目前占到了90%以上的总额;第三要求速度快,需要以秒级为目标进行实时动态处理。”
“最后在于价值密度”,陈伟认为,由于大量有用和可能没用的数据并存,“遍地是金子,又遍地是沙子”,所以大数据的目的就在于从庞大的数据集合中找寻有价值的数据和知识,通过分析挖掘为各行业提供真正的智慧,“可以说21世纪是‘数据钻出石油’的时代。”
“以交互数据为例,目前一些自媒体平台,比如新浪微博,每天都有超过2500万条的微博信息在发布,里面有很多有价值的信息尚未得到发掘”,中国电子信息产业发展研究院副总工程师李峻认为,在这样庞大的非结构化数据背后,如何利用大数据技术,从海量堆积的交互数据当中发现带有趋势性、前瞻性的讯息,就能够发现并产生巨大的社会价值和商业价值。
一个小苹果背后的大数据:数据之和的价值远大于数据的价值之和
“由于数据的存储、分析、应用等方面的商业运营方式还没有定型,这个行业发展的潜力、创新空间都十分巨大”,陕西省西咸新区管委会副主任、沣西新城管委会主任刘宇斌打了一个“小苹果背后的大数据”的简单比方:
以陕西省苹果产业发展为例,诸如某品种苹果种在哪里最适宜生长所需要的空间地理信息数据,与具体产区的苹果产量、含糖量等数据叠加,并通过物联网等手段赋予苹果可追溯的唯一“身份”,在种植过程中实时监控,由每一个苹果“反馈”收集而成的数据,假如足够海量,就整合而成了大数据。
拥有了这些数据,首先可以通过数据租售服务的方式与潜在客户产生价值,“此类商业模式体现了数据之和的价值远远大于数据的价值之和。”
其次,如能运用组群分析、数据挖掘等科学方法,辅以云计算、分布式存储等手段,则可以对数据展开深层次分析和预测服务,“哪些苹果品质最好,市场反应更好,明年产量销量会怎样,各地市场对苹果购买的喜好会有何变化”,这种数据深挖及其背后的消费者行为预测分析,曾是统计学家的特权,未来则可能花费几分钟时间就可以完成。
数据经过积累,并与全国其他地方进行比对,则可为陕西苹果产业发展提供决策支持服务,并成为政府、行业指导果农生产的决策依据,避免产品滞销和果农利益受损。
最后,随着数据和分析方法共识性的建立,数据服务商有可能搭建一个第三方大数据分析平台,为更多的数据持有者提供数据整理、过滤、分析和处理服务,甚至有朝一日发展出类似于ebay、淘宝等电子商务交易平台一样的第三方数据共享交易平台。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28