
Python中使用Queue和Condition进行线程同步的方法
这篇文章主要介绍了Python中使用Queue模块和Condition对象进行线程同步的方法,配合threading模块下的线程编程进行操作的实例,需要的朋友可以参考下
Queue模块保持线程同步
利用Queue对象先进先出的特性,将每个生产者的数据一次存入队列,而每个消费者将依次从队列中取出数据
import threading # 导入threading模块
import Queue # 导入Queue模块
class Producer(threading.Thread):# 定义生产者类
def __init__(self,threadname):
threading.Thread.__init__(self,name = threadname)
def run(self):
global queue # 声明queue为全局变量
queue.put(self.getName()) # 调用put方法将线程名添加到队列中
print self.getName(),'put ',self.getName(),' to queue'
class Consumer(threading.Thread):# 定义消费者类
def __init__(self,threadname):
threading.Thread.__init__(self,name = threadname)
def run(self):
global queue
print self.getName(),'get ',queue.get(),'from queue'#调用get方法获取队列中内容
queue = Queue.Queue() # 生成队列对象
plist = [] # 生成者对象列表
clist = [] # 消费者对象列表
for i in range(10):
p = Producer('Producer' + str(i))
plist.append(p) # 添加到生产者对象列表
for i in range(10):
c = Consumer('Consumer' + str(i))
clist.append(c) # 添加到消费者对象列表
for i in plist:
i.start() # 运行生产者线程
i.join()
for i in clist:
i.start() # 运行消费者线程
i.join()
######运行结果######
>>> Producer0 put Producer0 to queue
Producer1 put Producer1 to queue
Producer2 put Producer2 to queue
Producer3 put Producer3 to queue
Producer4 put Producer4 to queue
Producer5 put Producer5 to queue
Producer6 put Producer6 to queue
Producer7 put Producer7 to queue
Producer8 put Producer8 to queue
Producer9 put Producer9 to queue
Consumer0 get Producer0 from queue
Consumer1 get Producer1 from queue
Consumer2 get Producer2 from queue
Consumer3 get Producer3 from queue
Consumer4 get Producer4 from queue
Consumer5 get Producer5 from queue
Consumer6 get Producer6 from queue
Consumer7 get Producer7 from queue
Consumer8 get Producer8 from queue
Consumer9 get Producer9 from queue
Condition实现复杂的同步
使用Condition对象可以在某些事件触发或者达到特定的条件后才处理数据,Condition除了具有Lock对象的acquire方法和release方法外,
还有wait方法,notify方法,notifyAll方法等用于条件处理。
条件变量保持线程同步:threading.Condition()
wait():线程挂起,直到收到一个notify通知才会被唤醒继续运行
notify():通知其他线程,那些挂起的线程接到这个通知之后会开始运行
notifyAll(): 如果wait状态线程比较多,notifyAll的作用就是通知所有线程(这个一般用得少)
#coding:utf-8
import threading
import time
cond = threading.Condition()
class kongbaige(threading.Thread):
def __init__(self, cond, diaosiname):
threading.Thread.__init__(self, name = diaosiname)
self.cond = cond
def run(self):
self.cond.acquire() #获取锁
print self.getName() + ':一支穿云箭' #空白哥说的第一句话
self.cond.notify() #唤醒其他wait状态的线程(通知西米哥 让他说话)
#然后进入wait线程挂起状态等待notify通知(等西米哥的回复,接下来俩人就开始扯蛋)
self.cond.wait()
print self.getName() + ':山无棱,天地合,乃敢与君绝!'
self.cond.notify()
self.cond.wait()
print self.getName() + ':紫薇!!!!(此处图片省略)'
self.cond.notify()
self.cond.wait()
print self.getName() + ':是你'
self.cond.notify()
self.cond.wait()
#这里是空白哥说的最后一段话,接下来就没有对白了
print self.getName() + ':有钱吗 借点'
self.cond.notify() #通知西米哥
self.cond.release() #释放锁
class ximige(threading.Thread):
def __init__(self, cond, diaosiname):
threading.Thread.__init__(self, name = diaosiname)
self.cond = cond
def run(self):
self.cond.acquire()
self.cond.wait() #线程挂起(等西米哥的notify通知)
print self.getName() +':千军万马来相见'
self.cond.notify() #说完话了notify空白哥wait的线程
self.cond.wait() #线程挂起等待空白哥的notify通知
print self.getName() + ':海可枯,石可烂,激情永不散!'
self.cond.notify()
self.cond.wait()
print self.getName() + ':尔康!!!(此处图片省略)'
self.cond.notify()
self.cond.wait()
print self.getName() + ':是我'
self.cond.notify()
self.cond.wait()
#这里是最后一段话,后面空白哥没接话了 所以说完就释放锁 结束线程
print self.getName() + ':滚'
self.cond.release()
kongbai = kongbaige(cond, ' ')
ximi = ximige(cond, '西米')
#尼玛下面这2个启动标志是关键,虽然是空白哥先开的口,但是不能让他先启动,
#因为他先启动的可能直到发完notify通知了,西米哥才开始启动,
#西米哥启动后会一直处于44行的wait状态,因为空白哥已经发完notify通知了进入wait状态了,
#而西米哥没收到
#造成的结果就是2根线程就一直在那挂起,什么都不干,也不扯蛋了
ximi.start()
kongbai.start()
######运行结果######
:一支穿云箭
西米:千军万马来相见
:山无棱,天地合,乃敢与君绝!
西米:海可枯,石可烂,激情永不散!
:紫薇!!!!(此处图片省略)
西米:尔康!!!(此处图片省略)
:是你
西米:是我
:有钱吗 借点
西米:滚
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04