京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Python中使用Queue和Condition进行线程同步的方法
这篇文章主要介绍了Python中使用Queue模块和Condition对象进行线程同步的方法,配合threading模块下的线程编程进行操作的实例,需要的朋友可以参考下
Queue模块保持线程同步
利用Queue对象先进先出的特性,将每个生产者的数据一次存入队列,而每个消费者将依次从队列中取出数据
import threading # 导入threading模块
import Queue # 导入Queue模块
class Producer(threading.Thread):# 定义生产者类
def __init__(self,threadname):
threading.Thread.__init__(self,name = threadname)
def run(self):
global queue # 声明queue为全局变量
queue.put(self.getName()) # 调用put方法将线程名添加到队列中
print self.getName(),'put ',self.getName(),' to queue'
class Consumer(threading.Thread):# 定义消费者类
def __init__(self,threadname):
threading.Thread.__init__(self,name = threadname)
def run(self):
global queue
print self.getName(),'get ',queue.get(),'from queue'#调用get方法获取队列中内容
queue = Queue.Queue() # 生成队列对象
plist = [] # 生成者对象列表
clist = [] # 消费者对象列表
for i in range(10):
p = Producer('Producer' + str(i))
plist.append(p) # 添加到生产者对象列表
for i in range(10):
c = Consumer('Consumer' + str(i))
clist.append(c) # 添加到消费者对象列表
for i in plist:
i.start() # 运行生产者线程
i.join()
for i in clist:
i.start() # 运行消费者线程
i.join()
######运行结果######
>>> Producer0 put Producer0 to queue
Producer1 put Producer1 to queue
Producer2 put Producer2 to queue
Producer3 put Producer3 to queue
Producer4 put Producer4 to queue
Producer5 put Producer5 to queue
Producer6 put Producer6 to queue
Producer7 put Producer7 to queue
Producer8 put Producer8 to queue
Producer9 put Producer9 to queue
Consumer0 get Producer0 from queue
Consumer1 get Producer1 from queue
Consumer2 get Producer2 from queue
Consumer3 get Producer3 from queue
Consumer4 get Producer4 from queue
Consumer5 get Producer5 from queue
Consumer6 get Producer6 from queue
Consumer7 get Producer7 from queue
Consumer8 get Producer8 from queue
Consumer9 get Producer9 from queue
Condition实现复杂的同步
使用Condition对象可以在某些事件触发或者达到特定的条件后才处理数据,Condition除了具有Lock对象的acquire方法和release方法外,
还有wait方法,notify方法,notifyAll方法等用于条件处理。
条件变量保持线程同步:threading.Condition()
wait():线程挂起,直到收到一个notify通知才会被唤醒继续运行
notify():通知其他线程,那些挂起的线程接到这个通知之后会开始运行
notifyAll(): 如果wait状态线程比较多,notifyAll的作用就是通知所有线程(这个一般用得少)
#coding:utf-8
import threading
import time
cond = threading.Condition()
class kongbaige(threading.Thread):
def __init__(self, cond, diaosiname):
threading.Thread.__init__(self, name = diaosiname)
self.cond = cond
def run(self):
self.cond.acquire() #获取锁
print self.getName() + ':一支穿云箭' #空白哥说的第一句话
self.cond.notify() #唤醒其他wait状态的线程(通知西米哥 让他说话)
#然后进入wait线程挂起状态等待notify通知(等西米哥的回复,接下来俩人就开始扯蛋)
self.cond.wait()
print self.getName() + ':山无棱,天地合,乃敢与君绝!'
self.cond.notify()
self.cond.wait()
print self.getName() + ':紫薇!!!!(此处图片省略)'
self.cond.notify()
self.cond.wait()
print self.getName() + ':是你'
self.cond.notify()
self.cond.wait()
#这里是空白哥说的最后一段话,接下来就没有对白了
print self.getName() + ':有钱吗 借点'
self.cond.notify() #通知西米哥
self.cond.release() #释放锁
class ximige(threading.Thread):
def __init__(self, cond, diaosiname):
threading.Thread.__init__(self, name = diaosiname)
self.cond = cond
def run(self):
self.cond.acquire()
self.cond.wait() #线程挂起(等西米哥的notify通知)
print self.getName() +':千军万马来相见'
self.cond.notify() #说完话了notify空白哥wait的线程
self.cond.wait() #线程挂起等待空白哥的notify通知
print self.getName() + ':海可枯,石可烂,激情永不散!'
self.cond.notify()
self.cond.wait()
print self.getName() + ':尔康!!!(此处图片省略)'
self.cond.notify()
self.cond.wait()
print self.getName() + ':是我'
self.cond.notify()
self.cond.wait()
#这里是最后一段话,后面空白哥没接话了 所以说完就释放锁 结束线程
print self.getName() + ':滚'
self.cond.release()
kongbai = kongbaige(cond, ' ')
ximi = ximige(cond, '西米')
#尼玛下面这2个启动标志是关键,虽然是空白哥先开的口,但是不能让他先启动,
#因为他先启动的可能直到发完notify通知了,西米哥才开始启动,
#西米哥启动后会一直处于44行的wait状态,因为空白哥已经发完notify通知了进入wait状态了,
#而西米哥没收到
#造成的结果就是2根线程就一直在那挂起,什么都不干,也不扯蛋了
ximi.start()
kongbai.start()
######运行结果######
:一支穿云箭
西米:千军万马来相见
:山无棱,天地合,乃敢与君绝!
西米:海可枯,石可烂,激情永不散!
:紫薇!!!!(此处图片省略)
西米:尔康!!!(此处图片省略)
:是你
西米:是我
:有钱吗 借点
西米:滚
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22