京公网安备 11010802034615号
经营许可证编号:京B2-20210330
如何使用 Python 开始建立你的数据分析项目
现在有很多博文对复杂的机器学习算法和前沿的技术进行了展示,而这也促使数据科学家们慢慢变成了“社交控”(FOMO)。但数据分析的基本内容究竟是什么样的?你应当怎样安排项目结构?你需要使用什么样的工具?等等诸如此类的问题却鲜有人问津。本文将会对如何建立项目提供一些启发思路,以帮助你快速达到 在数据科学领域能有所产出 的境界。
项目结构
项目的结构总是为了契合人们的需求而得到不断完善,这会导致在一个团队中出现不同的项目构架。如果你或者团队中的其他人能够及时发现项目结构的重要性,并且这个概念在团队中得到推广,那么,你无疑是幸运的。
多年前作者偶然发现了 R 语言的项目模板 网站。从那之后,作者便一直提倡身边的人使用规范的项目结构。最近,DrivenData 发布了更为普适的 Cookiecutter Data Science 来构建项目结构。
而这些网站在项目构建方面的思路大致如下:
一个连贯且组织良好的结构,以便于人们协作
你的分析应当可复现,而你的项目结构可以满足这个需求
不应该从原始数据作为出发点开始你的项目,而应当假设原始数据不变,创建其他派生的文件
作者简略的项目结构如下所示:
example_project/
├── data/ <- The original, immutable data dump.
├── figures/ <- Figures saved by notebooks and scripts.
├── notebooks/ <- Jupyter notebooks.
├── output/ <- Processed data, models, logs, etc.
├── exampleproject/ <- Python package with source code.
│ └── __init__.py <-- Make the folder a package.
└── process.py <-- Example module.
├── tests/ <- Tests for your Python package.
└── test_process.py <-- Tests for process.py.
├── environment.yml <- Virtual environment definition.
├── README.md <- README with info of the project.
└── setup.py <- Install and distribute your module.
你可以在 这里 看到相关实例。
项目通常遵循另一种结构:
原始数据不变,存储在 data/中;
数据处理和相关输出图分别存储在不同的文件夹下,例如:figures/和output/;
笔记文件存储在notebooks/;
项目信息撰写在README.md中;
项目代码放置在独立的文件夹下。
实际上,你选择什么样的项目结构并不重要,只要它能符合你的工作流程,你也能坚持使用它。你应该尝试去理解何为项目,从而选择满足要求的项目结构。
虚拟环境
项目之间应当相互独立,你肯定不希望新的项目打乱了之前的工作成果。我们可以通过把不同项目的文件存储在不同的文件夹下实现独立性,但是不同项目之间也应当使用不同的 Python 环境。
虚拟环境依赖于不同的项目而相互独立,避免了包的冲突问题。每个虚拟环境都安装了特定版本的不同包。虚拟环境一中安装了版本为 1.11 的numpy库和版本为 0.18 的pandas库,而虚拟环境二中则仅仅安装了版本为 0.17 的pandas库。作者选取适用于数据科学的 conda 管理虚拟环境(可在 这里 看到选择它的原因)。
下列命令可以创建一个使用 Python 3.5 的新的 conda 虚拟环境,命名为 example_project:
$ conda install --name example_project python=3.5
激活虚拟环境( Windows 系统下将 source 省去):
$ source activate example_project
之后便可以安装所需的包了:
$ conda install pandas numpy jupyter scikit-learn
当你在不同的项目间跳转时,可以运行source deactivate命令取消激活,并激活新的项目虚拟环境。
一旦你熟练使用activate和deactivate命令,就会发现虚拟环境是一个很轻巧的工具来保证 Python 环境的独立。通过导出环境定义文件(例如,所有安装的包名和版本号),你的项目就很容易得到复现了。如果你想查看更多细节,可在Tim Hopper 的博文 中看到。
Git
每个项目都应该有自己的 Git 资源库。在每个项目创建一个资源库可以帮助你追踪每个项目的历史和解决在不同的项目间复杂的版本依赖问题。
又或者,你可以选择在一个资源库中包含多个项目,将所有内容存储在一个位置。这样做的缺点在于往往会因为合并冲突问题而告终(数据科学家通常并不能熟练使用 Git )。除了很多使用 Git 时出现的问题,这也会导致你的项目之间缺乏独立性。
创建 Git 资源库最简单的方法就是在你的 Git 远程主机托管服务(例如,Github 和 GitLab )上创建一个新的 Git 资源库,然后把它复制到本地:
$ git clone https://github.com/hgrif/example-project.git
你可以在这个空文件夹下构建你的项目结构。
如果你按照这个步骤执行,并准备在一个新文件夹下创建一些文件了。那么,你首先还需要在电脑上对 git 资源库进行初始化:
$ git init
然后在你的远程主机上创建一个新的 git 资源库,得到它的链接,并运行下列命令:
$ git remote add origin https://github.com/hgrif/example-project.git
该命令会添加链接为 https://github.com/hgrif/example-project.git 的远程资源库,并命令为 origin 。你可能需要把现有的 master分支推送到origin上:
$ git push --set-upstream origin master
在你的项目目录下创建.gitignore文件可以避免将图或数据误填加进资源库中。作者一般使用 针对 Python 的.gitignore文件 ,并且在文件中加入 data/、figures/ 和 output/ 文件夹,以便 Git 可以忽略它们。
既然 Git 已经设置好了,你就可以对核心内容使用git add和git commit命令了!
使用工具
使用一些工具可以帮助你摆脱那些重复性工作。
Python 中的cookiecutter包可根据模板自动创建项目文件夹。你可以使用现有的模板,例如,Cookiecutter Data Science 或者 作者的项目结构模板 ,或是创建你自己新的模板。
使用虚拟环境最好的方法就是选用支持它们的编辑器,比如:PyCharm 。你也可以使用 autoenv 或者 direnv 去激活虚拟环境,并设置环境的变量,如果你cd定位到一个工作目录下的话。
结论
对你的数据科学项目有一个良好的设置将会有助于同其他人协作,并且项目本身也会更容易复现。一个好的项目结构,一个虚拟环境和一个 git 资源库是每个数据科学项目的基石。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16