京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Python中实现变量赋值传递时的引用和拷贝方法
曾经看到这样一个问题,一个字典中的元素是列表,将这个列表元素赋值给一个变量,然后修改这个列表中元素的值,结果发现,字典中那个列表也同样修改了。
那个问题如下:
dict = {'a':[1,2,3,4,5],'b':2}
x = dict['a']
for i in range(5):
x[i] = 0
print(dict['a'])
程序运行结果如下:
[0, 0, 0, 0, 0]
这儿涉及到Python赋值到底是引用还是拷贝一份的问题,即赋值时是传值还是传址。上面问题是将“a”的值赋给了x出现了上述情况,如果是将“b”的值赋给了x,当我们修改x的值时,字典dict的值并不受影响。
>>> dict = {'a':[1,2,3,4,5],'b':2}
>>> x = dict['b']
>>> x
2
>>> x=x+3
>>> x
5
>>> dict
{'a': [1, 2, 3, 4, 5], 'b': 2}
>>>
那么问题来了,变量赋值传递时什么情况下是传值(拷贝),什么情况下是传址(引用)呢?
1、直接拷贝
当我们不知道是引用还是拷贝的情况下,可以显式的拷贝。比如字典对象本身都具有拷贝的方法:
x=dict.copy()
没有拷贝方法的对象,也是可以拷贝的。这儿我们引入一个深拷贝的概念,深拷贝——即python的copy模块提供的一个deepcopy方法。深拷贝会完全复制原变量相关的所有数据,在内存中生成一套完全一样的内容,在这个过程中我们对这两个变量中的一个进行任意修改都不会影响其他变量。还是上面的代码,如果改成如下:
import copy
dict = {'a':[1,2,3,4,5],'b':2}
x = copy.deepcopy(dict['a'])
for i in range(5):
x[i] = 0
print(dict['a'])
运行结果dict值不受影响。
除了深拷贝,copy模块还提供一个copy方法,称其为浅拷贝,对于简单的对象,深浅拷贝都是一样的,上面的词典对象的copy方法就是浅拷贝。
>>> dict
{'a': [8, 2, 3, 4, 5], 'b': 4}
>>> dd=copy.copy(dict)
>>> dd
{'a': [8, 2, 3, 4, 5], 'b': 4}
>>> dd['a'][0]=7
>>> dd
{'a': [7, 2, 3, 4, 5], 'b': 4}
>>> dict
{'a': [7, 2, 3, 4, 5], 'b': 4}
>>> ee=dict.copy()
>>> ee
{'a': [7, 2, 3, 4, 5], 'b': 4}
>>> ee['a'][0]=9
>>> ee
{'a': [9, 2, 3, 4, 5], 'b': 4}
>>> dict
{'a': [9, 2, 3, 4, 5], 'b': 4}
>>> ee['b']=5
>>> ee
{'a': [9, 2, 3, 4, 5], 'b': 5}
>>> dict
{'a': [9, 2, 3, 4, 5], 'b': 4}
>>>
浅拷贝时改变第一层次相互不受影响(上例中词典b值的修改),第二层次(上例中词典a的列表值修改)就相互影响了,改一个,其他跟着变。看看id吧:
>>> id(dict)
20109472
>>> id(dd)
20244496
>>> id(ee)
20495072
>>> id(dd['a'])
20272112
>>> id(ee['a'])
20272112
>>> id(dict['a'])
20272112
>>>
可见词典各个拷贝的id是不同的,但词典a值的id是相同的。如果我们需要真正意义的拷贝,就用深拷贝吧。
2、传递规则
Python赋值过程中不明确区分拷贝和引用,一般对静态变量的传递为拷贝,对动态变量的传递为引用。(注,对静态变量首次传递时也是引用,当需要修改静态变量时,因为静态变量不能改变,所以需要生成一个新的空间存储数据)。
字符串,数值,元组均为静态变量
列表,字典为动态变量。
变量有时比较复杂,存在组合现象,比如字典中包含列表,列表中包含字典,但赋值时,总是属于某个类型。如果实在不清楚状况,可以试验一下,用id()这个函数看看,如果是引用,两个变量指向的地址是相同的。例如:
>>> a=6
>>> id(a)
10413476
>>> b=a
>>> id(b)
10413476
>>> b=8
>>> id(b)
10413452
>>>
修改变量b之前,a和b指向的地址是相同的,修改b后,地址就变了。
以上这篇Python中实现变量赋值传递时的引用和拷贝方法就是小编分享给大家的全部内容了
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27