
Python中实现变量赋值传递时的引用和拷贝方法
曾经看到这样一个问题,一个字典中的元素是列表,将这个列表元素赋值给一个变量,然后修改这个列表中元素的值,结果发现,字典中那个列表也同样修改了。
那个问题如下:
dict = {'a':[1,2,3,4,5],'b':2}
x = dict['a']
for i in range(5):
x[i] = 0
print(dict['a'])
程序运行结果如下:
[0, 0, 0, 0, 0]
这儿涉及到Python赋值到底是引用还是拷贝一份的问题,即赋值时是传值还是传址。上面问题是将“a”的值赋给了x出现了上述情况,如果是将“b”的值赋给了x,当我们修改x的值时,字典dict的值并不受影响。
>>> dict = {'a':[1,2,3,4,5],'b':2}
>>> x = dict['b']
>>> x
2
>>> x=x+3
>>> x
5
>>> dict
{'a': [1, 2, 3, 4, 5], 'b': 2}
>>>
那么问题来了,变量赋值传递时什么情况下是传值(拷贝),什么情况下是传址(引用)呢?
1、直接拷贝
当我们不知道是引用还是拷贝的情况下,可以显式的拷贝。比如字典对象本身都具有拷贝的方法:
x=dict.copy()
没有拷贝方法的对象,也是可以拷贝的。这儿我们引入一个深拷贝的概念,深拷贝——即python的copy模块提供的一个deepcopy方法。深拷贝会完全复制原变量相关的所有数据,在内存中生成一套完全一样的内容,在这个过程中我们对这两个变量中的一个进行任意修改都不会影响其他变量。还是上面的代码,如果改成如下:
import copy
dict = {'a':[1,2,3,4,5],'b':2}
x = copy.deepcopy(dict['a'])
for i in range(5):
x[i] = 0
print(dict['a'])
运行结果dict值不受影响。
除了深拷贝,copy模块还提供一个copy方法,称其为浅拷贝,对于简单的对象,深浅拷贝都是一样的,上面的词典对象的copy方法就是浅拷贝。
>>> dict
{'a': [8, 2, 3, 4, 5], 'b': 4}
>>> dd=copy.copy(dict)
>>> dd
{'a': [8, 2, 3, 4, 5], 'b': 4}
>>> dd['a'][0]=7
>>> dd
{'a': [7, 2, 3, 4, 5], 'b': 4}
>>> dict
{'a': [7, 2, 3, 4, 5], 'b': 4}
>>> ee=dict.copy()
>>> ee
{'a': [7, 2, 3, 4, 5], 'b': 4}
>>> ee['a'][0]=9
>>> ee
{'a': [9, 2, 3, 4, 5], 'b': 4}
>>> dict
{'a': [9, 2, 3, 4, 5], 'b': 4}
>>> ee['b']=5
>>> ee
{'a': [9, 2, 3, 4, 5], 'b': 5}
>>> dict
{'a': [9, 2, 3, 4, 5], 'b': 4}
>>>
浅拷贝时改变第一层次相互不受影响(上例中词典b值的修改),第二层次(上例中词典a的列表值修改)就相互影响了,改一个,其他跟着变。看看id吧:
>>> id(dict)
20109472
>>> id(dd)
20244496
>>> id(ee)
20495072
>>> id(dd['a'])
20272112
>>> id(ee['a'])
20272112
>>> id(dict['a'])
20272112
>>>
可见词典各个拷贝的id是不同的,但词典a值的id是相同的。如果我们需要真正意义的拷贝,就用深拷贝吧。
2、传递规则
Python赋值过程中不明确区分拷贝和引用,一般对静态变量的传递为拷贝,对动态变量的传递为引用。(注,对静态变量首次传递时也是引用,当需要修改静态变量时,因为静态变量不能改变,所以需要生成一个新的空间存储数据)。
字符串,数值,元组均为静态变量
列表,字典为动态变量。
变量有时比较复杂,存在组合现象,比如字典中包含列表,列表中包含字典,但赋值时,总是属于某个类型。如果实在不清楚状况,可以试验一下,用id()这个函数看看,如果是引用,两个变量指向的地址是相同的。例如:
>>> a=6
>>> id(a)
10413476
>>> b=a
>>> id(b)
10413476
>>> b=8
>>> id(b)
10413452
>>>
修改变量b之前,a和b指向的地址是相同的,修改b后,地址就变了。
以上这篇Python中实现变量赋值传递时的引用和拷贝方法就是小编分享给大家的全部内容了
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08LSTM 输出不确定的成因、影响与应对策略 长短期记忆网络(LSTM)作为循环神经网络(RNN)的一种变体,凭借独特的门控机制,在 ...
2025-07-07统计学方法在市场调研数据中的深度应用 市场调研是企业洞察市场动态、了解消费者需求的重要途径,而统计学方法则是市场调研数 ...
2025-07-07CDA数据分析师证书考试全攻略 在数字化浪潮席卷全球的当下,数据已成为企业决策、行业发展的核心驱动力,数据分析师也因此成为 ...
2025-07-07剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04