京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据带来的隐患:数据垄断
在信息爆炸的社会,受众面对海量信息,往往需要花费大量的时间和精力进行筛选。但借助来自移动互联网和社会化媒体所提供的丰富数据资源(例如用户的地理位置、关系网、兴趣图谱等信息),以及日臻精确的挖掘和分析技术,媒体可以了解受众的心理、
需求以及行为习惯等,并以此为基础提供更符合受众需要的、个性化的内容服务与广告营销。这样的精准传播会加深受众好感,提高用户忠诚度。
以往触不可及的梦想在大数据时代实现了。而最深刻的革命其实不在外界,而在人类的思维领域。
人类思维的转向:人类的态度、情绪、行为等都可以变为数据进行分析和预测
人类内心深处隐秘的欲望、需求、情感是可以洞悉并预测的吗?这是一个长久以来盘亘在心理学家、行为学家、哲学家心中的困惑,而大数据时代的统计学家、数据挖掘专家则做出了肯定而乐观的回答。现在,“情感分析”、“预测模型”的应用已经渐入佳境,企业和媒体已经可以通过“情感分析”来确定社交媒体上用户群的态度,而推特(Twitter)甚至在2012年美国大选时对用户每天推文和评论的关键词进行量化跟踪,计算出“政治指数”来判断民心所向。
大数据技术使得人类的态度、情绪、行为等以往认为难以测量的方面,都可以变为数据来进行分析和预测。日常生活里的可量化维度从未得到如此淋漓尽致的挖掘与利用,而数学模型也在更广泛的领域里得到了重视。以往的统计分析强调的是因果关系,而现在的大数据研究更注重相关关系。因果关系的讨论时常不够全面,而对相关关系的把握更能够产生效用。从对“为什么”的疑问到对“是什么”的追寻,这体现了人类对世界的探索和理解有了更丰富的思路。
也许最极端的结论来自全球复杂网络研究权威艾伯特-拉斯洛·巴拉巴西。在一书中,他宣称人类行为93%是可以预测的:“当我们将生活数字化、公式化以及模型化的时候,我们会发现其实大家都非常相似。我们都具有爆发式,而且非常规律。看上去很随意、很偶然,但却极其容易被预测。”“爆发”即指人们的工作、娱乐及其他种种活动都有间歇性,会在短期内突然爆发,然后又几乎陷入沉寂。人类行为并非随机的小概率事件,而是在意向作用下非常规的突变行为。
不论巴拉巴西的理论是否赢得主流的共识,这些发现至少表明,在技术以外,大数据时代向人类昭示出越来越多富有启发意义的世界观和历史观。
大数据时代的隐忧:数据垄断的困境
首先,数据的可接近性并不就使得其使用合乎伦理。大数据为监测和预示人们的生活提供了极大的方便,然而个人隐私也随之暴露在无形的“第三只眼”之下。无论是电子商务、搜索引擎还是微博等互联网服务商都对用户行为数据进行了挖掘和分析,以获得商业利益,这一过程中不可避免地威胁到普通人的隐私。以往人们认为网络的匿名化可以避免个人信息的泄露,然而大数据时代里,数据的交叉检验会使得匿名化失效。许多数据在收集时并非具有目的性,但随着技术的快速进步,这些数据最终被开发出新的用途,而个人并不知情。不仅如此,运用大数据还可能预测并控制人类的潜在行为,在缺乏有效伦理机制下有可能造成对公平、自由、尊严等人性价值的践踏。
其次,越大的数据并非总是越好的数据。对数据的盲目依赖会导致思维和决策的僵化。当越来越多的事物被量化,人们也更加容易陷入只看重数据的误区里。关于数据在何时何地有意义的争议,已经不再局限于“标准化考试是否能够衡量学生素质”之类的讨论,而是拓展到更加广阔的领域。另一方面,如果企业甚至政府在决策过程中滥用数据资料或者出现分析失误,将会严重损害民众的安全和利益。如何避免成为数据的奴隶,已经成为迫在眉睫的问题。
第三,大数据的有限接入产生新的垄断和数码沟。面对大数据,谁能接入?为何目的?在何种情境下?受到怎样的限制?数据大量积累的同时,却也出现了数据垄断的困境。一些企业或国家为了维护自己的利益而拒绝信息的流动,这不仅浪费了数据资源,而且会阻碍创新的实现。与互联网时代的数码沟问题一样,大数据的应用同样存在着接入和技能的双重鸿沟。对于数据的挖掘和使用主要限于那些具有计算机开发和使用背景的专业人士,这也就意味着谁将占据优势、谁会败下阵来,以及由此而来的面对“谁更有权力”的拷问。
进入大数据时代,数据的掌握者们是否会平等地交换数据,促进数据分析的标准化,在数据公开的同时如何与知识产权的保护相结合,不仅涉及到政府的政策,也与企业的未来规划息息相关。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20