
新IT下的企业应重视大数据管理
如今,我们已经须臾离不开数据了。看新闻时,写博客时,发短信时,都会产生大量数据,数据源的数目和种类在无限上升,而且是以数字形态出现的,这些情况加上云计算的发展,为大数据提供了合适的环境和处理能力,由此推动了数据挖掘、商业智能发展到大数据。
大数据是从最基础的数据搜集、数据挖掘而来的,伴随着商业智能而日趋成为一项技术手段,最经典的实例是“啤酒与尿布”:1990年代,沃尔玛超市管理人员分析销售数据时,发现了一个令人难以理解的现象,即在某些特定情况下,啤酒与尿布,这两个看上去毫不相关的商品,会经常出现在男人的购物篮里,由此,他们在尿布货柜附近摆放了啤酒,结果销量大幅上涨。
大数据=大陷阱?
大数据和云计算一样,首先来自于可贵的实践,然后成为年半大佬们牵引行业思维的工具,刹那间全球山河一遍红,谁不“言必谈”都觉得对不起自己。有人跟风,有人溯源,也有人将它们重构为核心竞争力的一部分。这其实就是大佬们的运营,一载之后的类似热点是什么?或者是和移动互联网有关的"PC的终结",因为大佬准备好了。这是IT领域最直接的游戏规则,甚至没有潜规则。
那么大数据为什么是陷阱呢?主要来自于三个方面的考虑,一是对于众多IT厂商认为的“潜在用户”来说,是不是已经有足够的数据积累,可以实现在这个前提下的数据战略?二是数据的衍生价值往往聚焦于企业的业务决策乃至战略决策,这些决策真的来源于数据吗?实际上更多的是企业家的直觉与思维,数据的作用往往是用来证实这些直觉有什么偏差。
三是厂商们习惯通过“概念营销”来转移用户的视线,将过往的问题迁移到一个具有更大的不确定性中。概念升级是他们的重要成长策略,每一次概念的提出,都象江湖郎中那种药可以“包治百病”。从这些意义上看,就存在着陷阱。
注重大数据管理
按照世界电信联盟的统计数据来估计,世界互联网用户的数量仍在不断增加,今年移动数据增长量比去年增长了80%还多。这应该归功于普通的功能手机向智能手机的转换。具体,在全球范围来看今年全球智能手机销量已经超越功能手机销量。考虑到信息通信发展的潜力,相信这个市场会迅速成长。届时,电脑的功能会如春雨润物般渗入所有的领域,从而打开新世界的篇章。
在这个高速发展的信息、通信时代,最强大的力量是数据收集和分析的能力。也就是说,准确的汇总分析统计来数据会直接相关于企业获利。将来,不仅SNS,未来物联网中也会产生多样的数字信息。这一时代,每年书数据的增长量将是难以想象的。所以摆在我们眼前最紧迫的问题是,我们需要什么样的数据以进行实时分析,以及向谁应该提这些结果。
数据生产者,分析家和提供结果的供应商之间的关系一定要明确。以促进信息系统的良性循环,使开发成为可能。上面所提到的大数据应用策略适用于所有的公共机构,企业,教育机构和小型组织,以及社会所有成员为对象的业务都需要进行以适应移动文明时代的转换与促进。
而在移动设备中检查工作,处理的文件和信息也将变为可能,远程业务技术甚至可以让使用者在移动过程中进行作业。重要文件和数据因为已经被共享,所以并不需要专门的会议,就可以方便的了解别人的意见,来帮助做出何种决策,这也进一步提高了工作效率和生产力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29