京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Python数据结构与算法之常见的分配排序法示例【桶排序与基数排序】
本文实例讲述了Python数据结构与算法之常见的分配排序法。分享给大家供大家参考,具体如下:
箱排序(桶排序)
箱排序是根据关键字的取值范围1~m,预先建立m个箱子,箱排序要求关键字类型为有限类型,可能会有无限个箱子,实用价值不大,一般用于基数排序的中间过程。
桶排序是箱排序的实用化变种,其对数据集的范围,如[0,1) 进行划分为n个大小相同的子区间,每一个子区间为一个桶,然后将n非记录分配到各桶中。因为关键字序列是均匀分布在[0,1)上的,所以一般不会有很多记录落入同一个桶中。
以下的桶排序方法采用字典实现,所以对于整数类型,并不需要建立多余空间
def BuckSort(A):
bucks = dict() # 桶
for i in A:
bucks.setdefault(i,[]) # 每个桶默认为空列表
bucks[i].append(i) # 往对应的桶中添加元素
A_sort = []
for i in range(min(A), max(A)+1):
if i in bucks: # 检查是否存在对应数字的桶
A_sort.extend(bucks[i]) # 合并桶中数据
return A_sort
基数排序
# 基数排序
# 输入:待排序数组s, keysize关键字位数, 亦即装箱次数, radix基数
def RadixSort(s, keysize=4, radix=10):
# 按关键字的第k分量进行分配 k = 4,3,2,1
def distribute(s,k):
box = {r:[] for r in range(radix)} # 分配用的空箱子
for item in s: # 依次扫描s[],将其装箱
t = item
t /= 10**(k-1)
t %= 10 # 去关键字第k位
box[t].append(item)
return box
# 按分配结果重新排列数据
def collect(s,box):
a = 0
for i in range(radix):
s[a:a + len(box[i])] = box[i][:] # 将箱子中元素的合并,覆盖到原来的数组中
a += len(box[i]) # 增加偏移值
# 核心算法
for k in range(1,keysize+1):
box = distribute(s,k) # 按基数分配
collect(s,box) # 按分配结果拼合
以下摘自:《数据结构与算法——理论与实践》
基数排序可以拓展为按多关键字排序,如对扑克牌按花色、按点数排序。
一般地,设线性表有那个待排序元素,每个元素包含d个关键字{k1,k2,...,kd},则该线性表对关键字有序指,对于线性表中任意两个元素r[i]和r[j],1<=i<=j<=n,都满足下列有序关系:
{k1i,k2i,...,kdi} < {k1j,k2j,...,kdj}
其中k1称为最主位关键字,kd称为最次位关键字
其排序方法分两种:最高位优先MSD(most significant digit frist)与最低位优先LSD(least significant digit first)
MSD: 先按k1排序分组,同一组的个元素,若关键字k1相等,再对各组按k2排序分成子组,依次类推,直到最次位kd对各子组排序后,再将各组链接起来。
LSD: 与MSD相反,先按kd排序,再对kd-1排序,依次类推。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27