
商品经济时代,经营者深刻认识到与客户保持良好合作关系的重要性。无论是生产型或者销售型企业,抓住客户资源均是其创造理想收益的核心条件。建立客户关系管理系统使企业与客户之间的信任合作关系更加稳定,运用于数据挖掘模型深入挖掘客户资源价值是改善经营的基本要求。经营管理者借助数据模型可从多个角度辨别客户关系的现状,及时调整营销战略以保持正常的收益水平。
1客户关系管理系统的相关特点
受到市场经济竞争环境的刺激,管理者逐渐转变了传统落后的经营思想,引入了先进的经济管理理论。大部分企业深刻认识到客户资源的潜在价值,纷纷建立了客户关系管理系统(CRM)以维持良好的合作关系。从本质来说,CRM是结合高科技完成自动化经营的综合模式,尤其是以计算机技术为代表,开辟了现代化市场营销、客户服务的创新体系。CRM运用过程中的具体特点:
(1)技术性。信息科学技术是成立CRM不可缺少的条件,灵活运用系统操控技术可避免运营失误,降低了企业在市场经营中需要承担的各种风险。客户关系管理系统技术性特点表现:①硬件采用多功能计算机及其辅助设备,作为管理系统的操作平台,方便了客户信息的高效处理;②软件安装了不同功能的操作软件,配合数据挖掘技术获取价值信息。
(2)创新性。理论上,CRM坚持了“客户关系一对一”理论,在经营理念方面实现了很大的突破;实践上,经营者根据客户关系管理系统的执行需要,编制了一系列的新型管理机制,如图1所示,有效地改善了企业与客户之间的合作关系。先进管理系统普及于各个行业,既能带来运营模式的优化升级,也对具体项目的营销规划提供了参考,带动了内部控制效率的提高。
(3)共享性。借助于客户关系管理平台,企业可及时掌握与客户相关的信息,如:商品需求、服务需求、消费需求等,及时制定符合客户需要的个性化服务。相反,客户通过CRM也能实时掌握企业的经营动态,如:销售优惠、产品升级、业务拓展等,从而选择自身需要的项目消费。这实际上是CRM共享性特点的表现,企业与客户之间的信息均能共同享有。
图1客户关系管理系统
2 引用数据挖掘技术的数据准备
数据库是企业存储各类信息的“仓库”,日常经营所积累的信息数据均存储于管理数据库。由于技术条件的限制,未能尽早发现数据库信息潜在的应用价值,约束了企业经济收益水平的持续增收。客户资源是管理数据库尤为重要的数据信息,充分挖掘客户资源的内在价值可建立持久稳定的客户关系。数据挖掘技术运用于CRM必须做好充分的准备工作,如下:
(1)收集信息。客户关系管理系统引用数据挖掘技术,需要准备完整的客户信息,要求尽可能收集到更多与客户相关的基本信息。具体信息内容:①历史数据。查阅企业的交易记录,收集客户对象与企业在过去时间是否存在合作关系;②交易数据。查找某个合作项目的交易情况,应涉及到交易金额、产品数量、服务内容等;③个人数据。客户个人的资金持有、外在债务、消费水平等状况,为客户资源价值的挖掘提供资料。准备这些数据可通过内部资料获得,从各部门的管理数据库筛选即可。
(2)数据处理。准备客户关系管理系统数据结束,便可以利用计算机处理器进一步处理数据。处理的流程:①筛选。根据企业与客户存在的合作关系,筛选具有实用性价值的数据。如:销售型企业,重点筛选出客户的产品需求、消费能力、收入水平等;生产型企业,主要筛选客户对产品的采购量大小、质量标准的要求等;②处理。处理筛选出的客户数据,利用数据模型深入挖掘出有价值的客户资源,要求分析人员配合数据模型,如图2所示,详细地计算获得准确的结果,客观地指导企业调整经营策略。
图2数据挖掘运用于CRM的流程
3数据挖掘应用于CRM的操作方法
由于市场营销模式的转变,企业清晰地认识到客户资源的商业价值。CRM采用先进的信息科学技术,将企业的营销、销售、服务等融于一体的管理模式,显着改善了企业向广大客户提供服务的质量水平。数据挖掘运用于客户关系管理系统,实际操作要点涉及到需求预测、价格预测、周期预测等3个核心内容,这些都与企业经营收益额密切相关的。
(1)需求预测。对客户购买需求客观地预测分析,指导了企业生产或推销商品的主流方向,使其更加符合于整个市场消费的走向。利用数据模型能查阅到企业与客户在过去交易活动中的真实数据。需求预测决定了购买走向,也是企业制定服务项目的主要依据。需求预测的主要参数:客户已购买产品的已使用时间x;根据客户属性特征和回归方程,计算客户下次购买产品的时间间隔y。若x>y,说明客户重新购买此产品的概率较大,企业可向客户宣传发送相同产品的信息,促进客户重新购买本款商品;若x<y,说明客户重新购买此产品的概率较小,应及时更新产品信息,吸引客户尝试购买其它新款商品。
(2)价格预测。质量是影响产品成功销售的决定性因素,但价格对客户参与购买活动也有极大的刺激作用,数据挖掘技术运用于CRM也应对客户能够承受的价格标准进行预测。经过某段时间的市场调查,了解客户能够承受的价格范围。先挖掘出产品在市场销售期间的平均价格,再把平均价格与客户的心理承受价格相比较,选定一个比较接近客户实际的承受系数-“k”,得如下公式:
k=历史接受价格/平均价格
无论客户是否购买相同类的产品,数据挖掘出平均价格后,均可运用该公式计算出客户心理的大概价位,刺激消费者积极参与购买活动。同样,企业建立客户关系管理系统时也可运用该公式,科学地划分出不同需求、不同级别、不同消费的客户群,为制定市场营销战略提供客观的依据。
(3)周期预测。基于数据挖掘技术的客户关系管理模式,掌握消费客户群体参与经济交易活动的最新动态,以提供“高质量、高满意、高水平”的服务项目。产品使用到一定周期往往会被淘汰,客户要重新选购新的产品。此时企业必须维持客户生命周期,吸引客户长期购买本企业产品。例如,企业对客户生命周期限定为10年,客户的平均购买周期a,客户上一次采购至今的时间间隔b。根据如下公式:
(b-a)/a×100%>10
若计算结果>10,说明企业客户在不断流失,客户购买产品的次数、数量均呈现出下降的趋势。深入挖掘这一客户资源价值,能提早发现市场营销活动发生的变化,提醒企业采取紧急措施挽留客户,使客户生命周期保持更长的时间。
4 结论
企业投资建立客户关系管理系统,主要目的是与广大客户保持固定的合作关系,使不同产品有足够宽的销售途径,最根本目的是实现经济收益的提高。数据挖掘应用于客户关系管理系统,提供优越的产品服务,获得更多采购客户的认可,间接性地扩大了产品销售额度,促进了销售经营的收益水平。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28