京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据的下一步棋 把握大数据的前景
由于物联网和移动设备的快速发展,人类社会在过去两年里生成了全世界90%的数据。数据收集、存储和分析的成本骤降。
如今,各个行业都在借助由数据驱动的行业洞察,获得竞争优势。
大数据的未来前景更加宏大:为体量最大的行业拓宽视野,解决世界上一些最复杂的难题。
创业者和投资人应该从何种宏观角度来把握大数据的前景?
文内数据为全球及美国市场情况,但相信对于中国市场有同样的借鉴意义。本文PPT来自硅谷银行分析团队(SVB Analytics)最新的分析报告《大数据的下一步棋:把握大数据的前景》,由浦发硅谷银行提供。文字部分由网易创业Club解说。
第一部分:数据激增
由于处理成本、存储成本的大幅下降,网络传输能力的大幅增强,数据的产生、处理和收集数量都在呈现指数级的增长趋势。
数据人才需求四年翻三番。说明有更多的商业场景需要进行数据的收集、分析。这和始于2010年左右的移动端全球性普及趋势基本重合。考虑到企业级服务的兴起,未来的数据人才需求会更加旺盛。
第二部分:大数据业务成为美国VC的关注重点
针对大数据公司的风险投资从2010年的10亿美元增长到了2014年的50亿美元,年内交易数量从150增长到了500起。
尽管现在大家都开始说B2B的风口来了,事实上我们从数据可以看到,美国风险投资界在过去5年里对大数据分析公司的投资额度增长了大约17倍而对B2B服务型公司的投资额度仅仅增长了3倍。
当然,由于美国B2B服务的风险投资体量本身就很大,所以这并不是特别直接的对比方式。
不过,这也能够从一个侧面体现出大数据业务的发展势头。
在不同的融资规模所代表的不同融资阶段里,大数据公司的估值水平都明显高于科技类公司的平均估值。
这说明投资人非常看好大数据领域从而可以容忍较高的进入价格。
需要提醒注意的是,所有各个融资阶段的大数据公司估值都高于科技公司平均估值水平。
第三部分:大数据2.0,一个更大的漏斗模型
图中给出的是一个漏斗模型,相信搞产品、搞运营、搞销售、搞战略的同学们对此并不陌生。
由于IoT(物联网)的逐步成为现实,漏洞入口的数据来源正在以及将要呈现爆发性的增长。
物理硬件性能以及计算能力的高速发展让数据的收集、存储和处理成本大幅下降,数据处理方式和速度大幅提升,这让可以被处理的数据数目和类型发生不可想象的增长和变异。
由于上述一系列的能力提升背景,“传统”行业的数据分析范围和应用场景更加多样化,分析价值也越来越大。
大数据应用行业举例:零售、网络安全、广告、金融服务、农业、旅游与住宿、医疗健康、能源、金融服务。
可见,大数据可以应用的行业覆盖了2B、2C的多个甚至是所有的重要领域。
使用场景举例,硅谷银行在这里举了广告精准投放、网络欺诈安全、传感器–运营优化三个例子。我们已经可以在国内看到在几方面做的比较突出的大数据及SaaS服务创业公司了。
第四部分 大数据的跨行业应用,创业投资机遇在哪里?
硅谷银行将大数据的针对不同行业以三个维度做了成熟指数测算。
三个维度分别是:对数据的监管程度;数据捕获的难易度;技术整合的程度。
前面两个维度反映了数据来源的丰富及深入度,如果太难的话,在应用方面会受到限制。
对于体量庞大的行业而言,目前的大数据应用成熟度越低,未来的发展空间越大。
相对成熟的市场:
相比较而言,网络安全、广告、旅游住宿行业是“较小”的市场(2000-3000亿美元),它们的大数据渗透率比较高。
零售业由于线上零售发展多年,因此是一个有复杂大数据分析积淀的巨型市场(9000亿美元)。
更有潜力的市场:
农业虽然是个“小市场”但受制于数据收集的难度、分析技术的限制,目前还处于比较初期的阶段。
金融服务、医疗保健这样的大市场显然是所有人都会关注的大数据应用市场。但由于对数据的监管力度大、数据的获取难度高,所以仍然是一个发展远不完善的大数据市场。
这里,较为成熟的广告行业大数据早期公司获得风投的青睐越来越少了,而医疗健康类的早期大数据公司则开始获得更多风投的青睐。
这个趋势和各个行业大数据应用的成熟度密切相关。
风投在考虑趋势的时候会密切关注潜在发展空间是否足够大和限制因素是否可以被解决。
第五部分:总结,云和机器学习是大数据的未来
所谓“云”,要看大数据公司的云是否能够把目标客户放在公有云上的数据联动起来形成一个生态系统。
所谓“机器学习”,要看大数据公司的机器分析能力是否会随着数据数量和类型的增加、硬件性能的提升而更具洞察力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22