
中国大数据、人工智能、区块链发展趋势及应用场景研究报告
国家高度重视金融科技应用对于强化金融监管能力和促进金融转型发展的双重作用。在强化监管方面,以降低合规成本、有效防范金融风险为目标的监管科技(Regtech)正在成为金融科技的重要组成部分。在促进发展方面,金融科技应用能够有效提升金融服务效率,强化对实体经济的服务能力。随着云计算、大数据、人工智能和区块链等新兴技术在金融领域的广泛应用,金融科技正在以迅猛态势深刻改变金融行业生态和服务模式。
云计算、大数据、人工智能、区块链为四大新兴技术领域,本报告从应用价值、关键技术、应用场景和典型产品分析等四个方面,深入剖析四大新兴技术在金融领域的应用情况。小编对报告的主要内容作如下摘要:
首先,从金融行业应用需求出发,明确技术应用的市场价值;接着,深入浅出的阐述技术基本原理,明确在金融领域技术应用的特殊属性;然后,重点分析技术应用的具体场景,详细描述应用细节;最后,对典型技术产品进行技术指标的对比分析。
一、云计算在金融领域的应用
1、有效降低金融机构IT成本
性能上,云计算通过虚拟化技术将物理IT设备虚拟成IT能力资源池,以整个资源池的能力来满足金融机构算力和存储的需求。在物理设备上,云计算采用X86服务器和磁盘阵列作为基础设施。此外,通过云操作系统可以实现IT设备的负载均衡,提高单位IT设备的使用效率,降低单位信息化成本。因此,在IT性能相同的情况下,云计算架构的性价比远高于以大型机和小型机作为基础设施的传统金融架构。
2、 具有高可靠性和高可扩展性
传统金融架构强调稳定性,扩展能力相对较差。在基础资源上,大型机或小型机只能纵向扩展提升能力(scale-up),不能实现更加灵活的横向扩展(scale-out)。因此,随着业务需求增加,服务器越来越大,且交付时间越来越长。传统应用架构强调单体应用,数据库强调数据强一致性,可扩展性差。在可靠性上,云计算可以通过数据多副本容错、计算节点同构可互换等措施,有效保障金融企业服务的可靠性。在可扩展性上,云计算支持通过添加服务器和存储等IT设备实现性能提升,快速满足金融企业应用规模上升和用户告诉增长的需求。
二、 大数据在金融领域的应用
1、提升决策效率
大数据分析可以帮助金融机构实现以事实为中心的经营方法。大数据可以帮助金融机构,以数据为基础,逐步从静态的现象分析和预测,过渡到针对场景提供动态化的决策建议,从而更精准地对市场变化做出反应。
2、强化数据资产管理能力
金融机构大量使用传统数据库,成本较高,而且对于非结构化数据的存储分析能力不足。通过大数据底层平台建设,可以在部分场景替换传统数据库,并实现文字、图片和视频等更加多元化数据的存储分析,有效提升金融结构数据资产管理能力。
三、 人工智能在金融领域的应用价值探讨
1、进一步提升金融行业的数据处理能力与效率随着金融行业的不断发展,沉淀了大量的金融数据,主要涉及金融交易、个人信息、市场行情、风险控制、投资理财等。这些数据容量巨大且类型丰富,占据宝贵的储存资源,而从业人员却无法对其进行有效分析以供决策。虽然大数据技术的出现对此有所改善,但在数据的有效处理与分析挖掘上仍面临较大挑战。随着深度学习技术的不断推进,金融机构尝试将海量数据供机器进行学习,不断完善机器的认知能力,几乎达到与人类相媲美的水平,尤其在金融交易与风险管理这类对复杂数据的处理方面,人工智能有效利用大数据进行筛选分析,帮助金融机构更高效的决策分析,提升金融业务。
2、推动金融服务模式趋向主动化、个性化、智能化
随着人工智能的飞速发展,机器能够模拟人的认知与功能,使批量实现对客户的个性化和智能化服务成为可能,这将对目前金融行业沟通客户、挖掘客户金融需求的模式发生重大改变。整体而言,人工智能技术将显著改变金融行业现有格局,在前台可以用于提升客户体验,使服务更加个性化。
四、 区块链在金融领域的应用价值探讨
1、重构信用创造机制
区块链技术基于非对称加密算法,实现了信用创造机制的重构:在金融交易系统中,通过算法为人们创造信用,从而达成共识。交易双方无需了解对方基本信息,也无需借助第三方机构的担保,直接进行可信任的价值交换。区块链的技术特性保证了,系统内部价值交换过程中的行为记录、传输、存储的结果都是可信的,区块链记录的信息一旦生成将无法篡改,除非占有全网总算力的51%以上才有可能对记录进行修改。
2、降低金融监管成本
金融行业在防范系统性风险上,需要借助多道审计来控制金融风险,监管成本较高。特别是随着互联网金融等新兴金融服务模式的出现,金融管控要求逐步提升,监管的难度不断增加,整个金融系统的监管成本越来越高。区块链通过分布式网络结构,将信息储存于全网中的每个节点,单个节点信息缺失不影响其余节点正常运转。区块链技术,一起防篡改、高透明的特性,保证了每个数据节点内容的真实完整性,实现了系统的可追责性,降低了金融监管的成本。
五、金融科技前沿技术应用发展趋势
新一代信息技术形成融合生态,推动金融科技发展进入新阶段。
云计算、大数据、人工智能和区块链等新兴技术并非彼此孤立,而是相互关联、相辅相成、相互促进的。大数据是基础资源,云计算是基础设施,人工智能依托于云计算和大数据,推动金融科技发展走向智能化时代。区块链为金融业务基础架构和交易机制的变革创造了条件,它的实现离不开数据资源和计算分析能。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15