京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代如何探寻其安防商业价值
今日视点 “大数据”是近来一个热点话题,从华尔街到国内资本市场,大数据概念股持续走强。马云在5月10日的卸任演讲中也提道:“很多人还没搞清楚什么是PC互联网,移动互联网来了;我们还没搞清楚移动互联网的时候,大数据又来了。”
什么是“大数据”
大数据(bigdata)又称巨量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理,并整理成为帮助企业经营决策更积极目的的资讯。这里的“大”有几层含义,它可以形容组织的大小,而更重要的是它界定了企业中IT基础设施的规模,业内对大数据应用寄予了无限的期望,商业信息积累的越多价值也越大。因此大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。换言之,如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。
对于安防行业来讲,在平安城市、智能交通管理、环境保护、危化品运输监控、食品安全监控,或是政府机构、大企业工作场所等的与网络连接的设备系统将最有可能成为最大的数据资源。随着平安城市、智慧城市等工程的推进,监控摄像头已经遍布大街小巷,安防监控对高清化、智能化、网络化、数字化的要求越来越高,数据量自然也不断地迅速增加。
“大数据”带来的存储与管理难题
对于视频监控行业产生的大数据来说,深圳市中瀛鑫科技股份有限公司董事长兼总裁陈文明表示,中瀛鑫在2012年11月底研发出了国内首款1080P高清网络摄像机,速度能够达到每秒60帧,这样的摄像机一个月产生的视频文件就达1.8T,如果摄像头数量较多或多系统集成造成数据类型较多,长时间存储的负担一般企业难以承担。存储压力剧增,一方面对于存储服务器的承载能力要求很高,除了有能力存储大量的数据之外,还要面对更多的数据类型,这些数据的来源包括网上交易、网络社交活动、自动传感器、移动设备以及科学仪器等等。另一方面对于数据管理尤为重要,数据永远都在增长之中,当有需求去寻找某一段监控片段的时,必须与智能检索与智能分析技术相结合,才能更有效的攫取,成本也会相应提高很多。
“大数据“除了数据规模巨大之外,还意味着拥有庞大的文件数量。那么如何管理文件系统层累积的元数据是一个难题,处理不当的话会影响到系统的扩展能力和性能,而传统的NAS系统就存在这一瓶颈。所幸的是,基于对象的存储架构就不存在这个问题,它可以在一个系统中管理十亿级别的文件数量,而且还不会像传统存储一样遭遇元数据管理的困扰,基于对象的存储系统还具有广域扩展能力,可以在多个不同的地点部署并组成一个跨区域的大型存储基础架构。
寻求安防商业价值
大数据虽然在互联网上是热门的应用之一,但是在安防行业,由于其自身的业务特点和行业内的厂家受研发方向限制,导致“大数据“技术没有在安防行业深入应用,那么逐步挖掘出大数据在安防项目中的应用与发展方向对于大多数安企来说是绝佳的机遇之一。
面对超大规模的监控应用,作为数据的存储系统,在保障数据安全性、可靠性和稳定性的同时,应保证应用性能,如多路视频并发写入、文件检索、视频回放、数据管理等等。大数据的分析与挖掘作为智慧城市与智慧安防之间的共同支撑点之一,建立于大数据深度挖掘基础之上的城市综合性管理平台,才能打破传统行业信息孤岛的壁垒。
在信息时代,数据是一种重要的生产要素,如同资本、劳动力和原材料等其他要素一样,并且作为一种普遍需求,它也不再局限于某些特殊行业的应用。各行业的公司都在收集并利用大量的数据分析结果,尽可能的降低成本,提高产品质量、提高生产效率以及创造新的产品。通过分析直接从产品测试现场收集的数据,不仅能够帮助企业改进设计,还能通过深入分析客户行为,然后对比大量的市场数据,可以超越他的竞争对手。
目前有许多企业认识到大数据分析应用的潜在价值,将更多的数据集纳入系统进行比较,同时让更多的人分享并使用这些数据,综合分析那些来自不同平台下的多种数据对象,包括全局文件系统在内的存储基础设施就能够帮助用户解决数据访问的问题,全局文件系统允许多个主机上的多个用户并发访问文件数据,而这些数据则可能存储在多个地点的多种不同类型的存储设备上,以便创造更多的商业价值。
小结
正如马云所讲的那样,信息化时代的脚步非常快,中国互联网络信息中心(CNNIC)发布《第28次中国互联网络发展状况统计报告》中,截止2012年6月,手机网民在总体网民中的比例达65.5%,成为中国网民的重要组成部分,移动互联网速度非常惊人,那么大数据时代的悄然来临,必然会在各行业内掀起商业风云,安防也不例外。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27