
Python增量循环删除MySQL表数据的方法
有一业务数据库,使用MySQL 5.5版本,每天会写入大量数据,需要不定期将多表中“指定时期前“的数据进行删除,在SQL SERVER中很容易实现,写几个WHILE循环就搞定,虽然MySQL中也存在类似功能,怎奈自己不精通,于是采用Python来实现
话不多少,上脚本:
# coding: utf-8
import MySQLdb
import time
# delete config
DELETE_DATETIME = '2016-08-31 23:59:59'
DELETE_ROWS = 10000
EXEC_DETAIL_FILE = 'exec_detail.txt'
SLEEP_SECOND_PER_BATCH = 0.5
DATETIME_FORMAT = '%Y-%m-%d %X'
# MySQL Connection Config
Default_MySQL_Host = 'localhost'
Default_MySQL_Port = 3358
Default_MySQL_User = "root"
Default_MySQL_Password = 'roo@01239876'
Default_MySQL_Charset = "utf8"
Default_MySQL_Connect_TimeOut = 120
Default_Database_Name = 'testdb001'
def get_time_string(dt_time):
"""
获取指定格式的时间字符串
:param dt_time: 要转换成字符串的时间
:return: 返回指定格式的字符串
"""
global DATETIME_FORMAT
return time.strftime(DATETIME_FORMAT, dt_time)
def print_info(message):
"""
将message输出到控制台,并将message写入到日志文件
:param message: 要输出的字符串
:return: 无返回
"""
print(message)
global EXEC_DETAIL_FILE
new_message = get_time_string(time.localtime()) + chr(13) + str(message)
write_file(EXEC_DETAIL_FILE, new_message)
def write_file(file_path, message):
"""
将传入的message追加写入到file_path指定的文件中
请先创建文件所在的目录
:param file_path: 要写入的文件路径
:param message: 要写入的信息
:return:
"""
file_handle = open(file_path, 'a')
file_handle.writelines(message)
# 追加一个换行以方便浏览
file_handle.writelines(chr(13))
file_handle.close()
def get_mysql_connection():
"""
根据默认配置返回数据库连接
:return: 数据库连接
"""
conn = MySQLdb.connect(
host=Default_MySQL_Host,
port=Default_MySQL_Port,
user=Default_MySQL_User,
passwd=Default_MySQL_Password,
connect_timeout=Default_MySQL_Connect_TimeOut,
charset=Default_MySQL_Charset,
db=Default_Database_Name
)
return conn
def mysql_exec(sql_script, sql_param=None):
"""
执行传入的脚本,返回影响行数
:param sql_script:
:param sql_param:
:return: 脚本最后一条语句执行影响行数
"""
try:
conn = get_mysql_connection()
print_info("在服务器{0}上执行脚本:{1}".format(
conn.get_host_info(), sql_script))
cursor = conn.cursor()
if sql_param is not None:
cursor.execute(sql_script, sql_param)
row_count = cursor.rowcount
else:
cursor.execute(sql_script)
row_count = cursor.rowcount
conn.commit()
cursor.close()
conn.close()
except Exception, e:
print_info("execute exception:" + str(e))
row_count = 0
return row_count
def mysql_query(sql_script, sql_param=None):
"""
执行传入的SQL脚本,并返回查询结果
:param sql_script:
:param sql_param:
:return: 返回SQL查询结果
"""
try:
conn = get_mysql_connection()
print_info("在服务器{0}上执行脚本:{1}".format(
conn.get_host_info(), sql_script))
cursor = conn.cursor()
if sql_param != '':
cursor.execute(sql_script, sql_param)
else:
cursor.execute(sql_script)
exec_result = cursor.fetchall()
cursor.close()
conn.close()
return exec_result
except Exception, e:
print_info("execute exception:" + str(e))
def get_id_range(table_name):
"""
按照传入的表获取要删除数据最大ID、最小ID、删除总行数
:param table_name: 要删除的表
:return: 返回要删除数据最大ID、最小ID、删除总行数
"""
global DELETE_DATETIME
sql_script = """
SELECT
MAX(ID) AS MAX_ID,
MIN(ID) AS MIN_ID,
COUNT(1) AS Total_Count
FROM {0}
WHERE create_time <='{1}';
""".format(table_name, DELETE_DATETIME)
query_result = mysql_query(sql_script=sql_script, sql_param=None)
max_id, min_id, total_count = query_result[0]
# 此处有一坑,可能出现total_count不为0 但是max_id 和min_id 为None的情况
# 因此判断max_id和min_id 是否为NULL
if (max_id is None) or (min_id is None):
max_id, min_id, total_count = 0, 0, 0
return max_id, min_id, total_count
def delete_data(table_name):
max_id, min_id, total_count = get_id_range(table_name)
temp_id = min_id
while temp_id <= max_id:
sql_script = """
DELETE FROM {0}
WHERE id <= {1}
and id >= {2}
AND create_time <='{3}';
""".format(table_name, temp_id + DELETE_ROWS, temp_id, DELETE_DATETIME)
temp_id += DELETE_ROWS
print(sql_script)
row_count = mysql_exec(sql_script)
print_info("影响行数:{0}".format(row_count))
current_percent = (temp_id - min_id) * 1.0 / (max_id - min_id)
print_info("当前进度{0}/{1},剩余{2},进度为{3}%".format(temp_id, max_id, max_id - temp_id, "%.2f" % current_percent))
time.sleep(SLEEP_SECOND_PER_BATCH)
print_info("当前表{0}已无需要删除的数据".format(table_name))
delete_data('TB001')
delete_data('TB002')
delete_data('TB003')
执行效果:
实现原理:
由于表存在自增ID,于是给我们增量循环删除的机会,查找出满足删除条件的最大值ID和最小值ID,然后按ID 依次递增,每次小范围内(如10000条)进行删除。
实现优点:
实现“小斧子砍大柴”的效果,事务小,对线上影响较小,打印出当前处理到的“ID”,可以随时关闭,稍微修改下代码便可以从该ID开始,方便。
实现不足:
为防止主从延迟太高,采用每次删除SLEEP1秒的方式,相对比较糙,最好的方式应该是周期扫描这条复制链路,根据延迟调整SLEEP的周期,反正都脚本化,再智能化点又何妨!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18