
用SPSS进行多变量数据分析
1.将所给的数据输入SPSS 22.0中文版。分别设置变量为温度,体重1、2、3、4;体重,温度5、10、15、20、30。
2.用SPSS进行作图(过程略)。
3.对数据进行多因素变量分析,具体操作如下:
(1)以体重组和温度5、10、15、20、30作为变量,在菜单里选择分析->比较平均值->单因素ANOVA,将体重组选入“因子”,将温度5、10、15、20、30选入“因变量列表”,在“事后多重比较”中选中Tukey-B(视情况选择其他),分别修改显著性水平为0.05、0.01,点击“选项”,勾选“描述性”,然后点击确定,得到输出结果,把结果导出到Excel里。
(2)以温度和体重组1、2、3、4作为变量,再次重复上述步骤,其中将温度选入“因子”,将体重组1、2、3、4选入“因变量列表”,其余操作步骤相同。
(3)根据SPSS导出的数据,处理结果如下:
表1 同一温度下,不同体重组之间显著性分析结果
Table 1 The significant results of different weight at the same temperature
从表1可以得出结论:
1.在alpha = 0.05水平上,在5℃时,体重组1和体重组3、4有明显差异;在10℃时,体重组1和3、4之间有明显差异,体重组2和4之间有明显差异;在15℃和20℃时,体重组1、2和3、4之间有明显差异;在30℃时,各体重组之间无明显差异。
2.在alpha = 0.01水平上,在5℃时,体重组1、2和4之间有明显差异;在10℃时,体重组1和4之间有明显差异;在15℃时,体重组1和3、4,2和4之间有明显差异;在20℃和30℃时,各体重组之间无明显差异。
注:有不同字母即代表有明显差异。
表2 同一体重组下,不同温度之间显著性分析结果
Table2. The significant results of different temperature at the same weight
从表2可以得出结论:
1.在alpha =
0.05水平上,对于体重组1,温度5和10、15、20、30有明显差异,温度10和30有明显差异;对于体重组2,温度5和10、15、20、30有明显差异,温度10、15、20和30有明显差异;对于体重组3和4,温度5和10、15、20、30有明显差异。
2.在alpha = 0.01水平上,对于体重组1,温度5和10、15、20、30有明显差异,温度10和30有明显差异;对于体重组2,温度5和10、15、20、30有明显差异;对于体重组3和4,温度5和10、15、20、30有明显差异。
结论:
由以上分析可以得出结论,蜗牛的初始体重和所处的温度都对取食量有一定的影响。在温度较低时,体重差别大的取食量差别也大,温度较高时则没有明显差别。在体重较低时,取食量受温度影响较为明显,在体重较高时,5℃和10℃及以上温度有明显差别,10℃、15℃、20℃、30℃之间则无明显差别。
注:本人非此专业学生,因此文中如有错误,恳请大家批评指正。
附Excel原始数据:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15