京公网安备 11010802034615号
经营许可证编号:京B2-20210330
python实现定制交互式命令行的方法
Python的交互式命令行可通过启动文件来配置。
当Python启动时,会查找环境变量PYTHONSTARTUP,并且执行该变量中所指定文件里的程序代码。该指定文件名称以及地址可以是随意的。按Tab键时会自动补全内容和命令历史。这对命令行的有效增强,而这些工具则是基于readline模块实现的(这需要readline程序库辅助实现)。
此处为大家举一个简单的启动脚本文件例子,它为python命令行添加了按键自动补全内容和历史命令功能。
[python@python ~]$ cat .pythonstartup
import readline
import rlcompleter
import atexit
import os
#tab completion
readline.parse_and_bind('tab: complete')
#history file
histfile = os.path.join(os.environ['HOME'], '.pythonhistory')
try:
readline.read_history_file(histfile)
except IOError:
pass
atexit.register(readline.write_history_file,histfile)
del os,histfile,readline,rlcompleter
设置环境变量
[python@python ~]$ cat .bash_profile|grep PYTHON
export PYTHONSTARTUP=/home/python/.pythonstartup
验证Tab键补全和历史命令查看。
[python@python ~]$ python
Python 2.7.5 (default, Oct 6 2013, 10:45:13)
[GCC 4.1.2 20080704 (Red Hat 4.1.2-44)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import md5
>>> md5.
md5.__class__( md5.__getattribute__( md5.__reduce__( md5.__subclasshook__(
md5.__delattr__( md5.__hash__( md5.__reduce_ex__( md5.blocksize
md5.__dict__ md5.__init__( md5.__repr__( md5.digest_size
md5.__doc__ md5.__name__ md5.__setattr__( md5.md5(
md5.__file__ md5.__new__( md5.__sizeof__( md5.new(
md5.__format__( md5.__package__ md5.__str__( md5.warnings
>>> import os
>>> import md5
注意:如果在make的时候出现:
Python build finished, but the necessary bits to build these modules were not found:
_tkinter gdbm readline sunaudiodev
如果对此忽略了的话,import readline会报错。表示没有指定模块!
这里是缺少指定包:
redhat: readline-devel.xxx.rpm
安装上重新编译执行,问题即可得到解决。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01