
“大数据”能否 给我开结婚证明
“证明我妈是我妈”、“证明我活着”、“证明我结婚前未婚”之类“奇葩证明”,让人哭笑不得而又苦不堪言。公众和媒体对“奇葩证明”的揭露声讨,给公安、民政、教育等职能部门施加了不小的压力,继公安部宣布不再开具“偿还能力证明”、“生存(健在)或死亡证明”、“婚姻状况证明”、“身份证丢失证明”等18种不在公安机关办理范围内的证明后,日前民政部下发《关于进一步规范(无)婚姻登记记录证明相关工作的通知》,规定除对涉台公证事项和涉哈萨克斯坦、芬兰等9个国家的公证事项仍可继续出具证明外,各地民政部门不再出具(无)婚姻登记记录证明(即婚姻状况证明,包括“单身证明”)。
民政部不再开具婚姻状况证明,作为落实简政放权之举受到了舆论的好评,同时也引来不少人担心——不再出具婚姻状况证明,民政部门倒是省事了,但现在办理买房、贷款、上学等许多事项都要提供婚姻状况证明,民政部门甩手不管了,老百姓的“证明难”岂不是更难了?
公安部宣布不再开具18种非公安机关办理范围内的证明时,详细介绍这18种证明分别应该到哪些部门去开具,其中针对开具婚姻状况证明,公安部的指引是“民政部门是婚姻登记机关,公民应到民政部门取证,派出所不予出具证明”。公安部认为婚姻状况证明应由民政部门开具,而今民政部规定民政部门不再开具婚姻状况证明,如此相互矛盾,到底是咋回事?
民政部随后做出解释,称已与教育、住建部、银监会等婚姻登记信息的主要使用部门协商,如相关部门根据法律法规规定,需要了解核对当事人婚姻登记情况的,可以通过开放信息核对端口、公函往来等多种方式,在部门间直接完成信息核对工作,不再需要当事人在婚姻登记信息使用部门和民政部门之间往返奔波,以切实减轻当事人办事创业的负担,真正将简政放权要求落到实处。这个解释不但很快消除了人们的担心,而且显示了一种全新的工作思路,让人刮目相看。
以往常见的是,公民到某个部门办理事项,该部门要公民提供某个证明,公民得自己跑到有关部门去开这个证明,然后拿着这个证明,回到前面那个部门办理事项。现在,民政部提出的全新工作思路是,教育、城建、银行等确需公民提供婚姻状况证明的,可以通过开放信息核对端口、公函往来等方式与民政部门商调、核查,无需公民自己在不同部门之间往返奔波。这就把解决公民“证明难”的压力和负担,从公民身上转移到了职能部门身上,并且可以提高公民信息证明的共识性和准确性,减少违规开具证明、制售假证明等违规违法行为的发生几率。
民政部的上述全新工作思路,体现了国家促进大数据发展与应用的方向。国务院上月底印发《促进大数据发展行动纲要》,提出在公用事业、市政管理、城乡环境、健康医疗、社会救助、养老服务、劳动就业、社会保障、文化教育、消费维权、社区服务等领域全面推广大数据应用,在2017年年底前形成跨部门数据资源共享共用格局。《纲要》要求明确各部门数据共享的范围边界和使用方式,厘清各部门数据管理及共享的义务和权利,依托政府数据统一共享交换平台,实现公共服务的多方数据共享、制度对接和协同配合。
为建成跨部门数据资源共享共用体系,所有涉及和参与的部门、机构都应当摒弃门户之见,淡化利益之争,对数据资源互通互利形成基本共识,才能积极主动把自己掌握和积累的数据“交”出来,与其他部门、机构交流分享,为其他部门、机构提供数据支持和服务。在此问题上,越是具有数据资源优势的部门、机构,往往越难以摒弃门户之见,越容易陷入斤斤计较、讨价还价的误区。因为他们会觉得,自己的数据资源更丰富,含金量和利用价值更高,不能轻易“交”出去与他人共享。
与其他一些部门、机构相比,民政部门在大数据资源上具有明显优势,但他们没有囿于门户之见,而是主动向教育、住建、银行等部门表示愿意开放民政数据信息,希望这些部门通过数据信息平台,向民政部门商调、核查有关数据信息。这说明在大数据建设和应用工作中,民政部门走在了其他一些政府部门的前面。
当然,大数据也是一把双刃剑,数据开放、共享共用的同时也容易造成数据泄露滥用,以大数据发展化解“证明难”的同时,还要最大限度防止数据泄露滥用,避免对公民人身权利造成威胁侵害。《纲要》为此提出,要积极研究数据开放、保护等方面制度,修订政府信息公开条例,明确政府统筹利用市场主体大数据的权限及范围;明确数据采集相关主体的权利、责任和义务,加强对数据滥用、侵犯个人隐私等行为的管理和惩戒。民政、公安、住建等部门以大数据发展积极化解“证明难”,应恪守个人数据信息采集和应用的权力边界,依法保护居民个人信息和隐私信息,在促进大数据发展和保障公民权益之间找到最佳平衡点。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25