京公网安备 11010802034615号
经营许可证编号:京B2-20210330
“大数据”能否 给我开结婚证明
“证明我妈是我妈”、“证明我活着”、“证明我结婚前未婚”之类“奇葩证明”,让人哭笑不得而又苦不堪言。公众和媒体对“奇葩证明”的揭露声讨,给公安、民政、教育等职能部门施加了不小的压力,继公安部宣布不再开具“偿还能力证明”、“生存(健在)或死亡证明”、“婚姻状况证明”、“身份证丢失证明”等18种不在公安机关办理范围内的证明后,日前民政部下发《关于进一步规范(无)婚姻登记记录证明相关工作的通知》,规定除对涉台公证事项和涉哈萨克斯坦、芬兰等9个国家的公证事项仍可继续出具证明外,各地民政部门不再出具(无)婚姻登记记录证明(即婚姻状况证明,包括“单身证明”)。
民政部不再开具婚姻状况证明,作为落实简政放权之举受到了舆论的好评,同时也引来不少人担心——不再出具婚姻状况证明,民政部门倒是省事了,但现在办理买房、贷款、上学等许多事项都要提供婚姻状况证明,民政部门甩手不管了,老百姓的“证明难”岂不是更难了?
公安部宣布不再开具18种非公安机关办理范围内的证明时,详细介绍这18种证明分别应该到哪些部门去开具,其中针对开具婚姻状况证明,公安部的指引是“民政部门是婚姻登记机关,公民应到民政部门取证,派出所不予出具证明”。公安部认为婚姻状况证明应由民政部门开具,而今民政部规定民政部门不再开具婚姻状况证明,如此相互矛盾,到底是咋回事?
民政部随后做出解释,称已与教育、住建部、银监会等婚姻登记信息的主要使用部门协商,如相关部门根据法律法规规定,需要了解核对当事人婚姻登记情况的,可以通过开放信息核对端口、公函往来等多种方式,在部门间直接完成信息核对工作,不再需要当事人在婚姻登记信息使用部门和民政部门之间往返奔波,以切实减轻当事人办事创业的负担,真正将简政放权要求落到实处。这个解释不但很快消除了人们的担心,而且显示了一种全新的工作思路,让人刮目相看。
以往常见的是,公民到某个部门办理事项,该部门要公民提供某个证明,公民得自己跑到有关部门去开这个证明,然后拿着这个证明,回到前面那个部门办理事项。现在,民政部提出的全新工作思路是,教育、城建、银行等确需公民提供婚姻状况证明的,可以通过开放信息核对端口、公函往来等方式与民政部门商调、核查,无需公民自己在不同部门之间往返奔波。这就把解决公民“证明难”的压力和负担,从公民身上转移到了职能部门身上,并且可以提高公民信息证明的共识性和准确性,减少违规开具证明、制售假证明等违规违法行为的发生几率。
民政部的上述全新工作思路,体现了国家促进大数据发展与应用的方向。国务院上月底印发《促进大数据发展行动纲要》,提出在公用事业、市政管理、城乡环境、健康医疗、社会救助、养老服务、劳动就业、社会保障、文化教育、消费维权、社区服务等领域全面推广大数据应用,在2017年年底前形成跨部门数据资源共享共用格局。《纲要》要求明确各部门数据共享的范围边界和使用方式,厘清各部门数据管理及共享的义务和权利,依托政府数据统一共享交换平台,实现公共服务的多方数据共享、制度对接和协同配合。
为建成跨部门数据资源共享共用体系,所有涉及和参与的部门、机构都应当摒弃门户之见,淡化利益之争,对数据资源互通互利形成基本共识,才能积极主动把自己掌握和积累的数据“交”出来,与其他部门、机构交流分享,为其他部门、机构提供数据支持和服务。在此问题上,越是具有数据资源优势的部门、机构,往往越难以摒弃门户之见,越容易陷入斤斤计较、讨价还价的误区。因为他们会觉得,自己的数据资源更丰富,含金量和利用价值更高,不能轻易“交”出去与他人共享。
与其他一些部门、机构相比,民政部门在大数据资源上具有明显优势,但他们没有囿于门户之见,而是主动向教育、住建、银行等部门表示愿意开放民政数据信息,希望这些部门通过数据信息平台,向民政部门商调、核查有关数据信息。这说明在大数据建设和应用工作中,民政部门走在了其他一些政府部门的前面。
当然,大数据也是一把双刃剑,数据开放、共享共用的同时也容易造成数据泄露滥用,以大数据发展化解“证明难”的同时,还要最大限度防止数据泄露滥用,避免对公民人身权利造成威胁侵害。《纲要》为此提出,要积极研究数据开放、保护等方面制度,修订政府信息公开条例,明确政府统筹利用市场主体大数据的权限及范围;明确数据采集相关主体的权利、责任和义务,加强对数据滥用、侵犯个人隐私等行为的管理和惩戒。民政、公安、住建等部门以大数据发展积极化解“证明难”,应恪守个人数据信息采集和应用的权力边界,依法保护居民个人信息和隐私信息,在促进大数据发展和保障公民权益之间找到最佳平衡点。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题, ...
2026-01-05在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、 ...
2026-01-04在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有 ...
2026-01-04在CDA(Certified Data Analyst)数据分析师的工作链路中,数据读取是连接原始数据与后续分析的关键桥梁。如果说数据采集是“获 ...
2026-01-04尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30