
政务大数据的上下文范围
“上下文”是软件工程里的常用词,是“context”的直接翻译,在java等编程语言中经常出现,通常指一组环境信息、容器信息或者状态信息,类似于中文里的“语境”。而“上下文范围”这个词,最早还是在徐锋老师的需求分析师课程见到,用以描述需求的范围边界。故此,政务大数据的上下文范围即政务大数据的运行环境和执行范围。在漫谈政务大数据系列文章的序“浅谈政务大数据的本质”一文中,提到政务大数据的本质就是政务。因此,讨论政务大数据的上下文边界,就是要明确政务的上下文边界。
自20世纪80年代中期至今(近30年以来),电子政务的发展可以粗放式地分为以下三个主要的阶段:
第一阶段:政务信息化阶段,以办公自动化、专项业务应用和双门户(互联网门户、政务网统一信息/应用平台)作为建设内容的重点,以政务电子化、政府上网和政务服务一体化为主要特征。
传统的电子政务规划,可以归纳为“三网、四库、十二金”。政务的“三网”从逻辑域划分来讲,是指政务互联网(也成政府公众信息网,与互联网直接连通)、政务外网(也称政务专网,与互联网逻辑隔离[单向连通],服务于信息交换,各个部门协同的办公业务资源网)和政务内网(与互联网物理隔离、物理上不连通,一般用于机关内部办公业务)。政务的“四库”一般指人口、法人单位、空间地理和自然资源、宏观经济等四个基础数据库,后来泛称为政务信息资源库这一个库。政务的“十二金”曾经是电子政务的重要建设内容,也曾是国家电子政务应用的顶层规划,但目前几乎不怎么提了。本着捋清发展轨迹的精神,在这里还是简单回顾一下。首先,“十二金”是泛指政府行政、监管和服务工作中涉及的“十二个”重要业务信息系统,事实上数量是超过十二个的(如:金宏、金财、金农、金盾、金保、金税、金关、金水、金质、金审、金卡、金贸、金企、金信[红盾]等等)。其次,“十二金”虽然广受诟病,但其在电子政务发展过程中的作用是里程碑式的、非常重要的。
第二阶段:智慧城市阶段,以数字城市、市民一卡通、应急指挥、一站式行政服务大厅、全程网上政务服务、网格化治理、数据中心为主要建设内容,以城市整体、全局的视角,综合运用物联网、虚拟化、云计算等信息技术,提供协同、高效、综合的政务服务能力,智慧城市具体到智慧政府上,本质上是以“政务互联网+”为重要展现形式的,政务网络化是其主要特征。
2014年3月,《国家新型城镇化规划(2014-2020年)》发布,8月,《关于促进智慧城市健康发展的指导意见》(以下简称“意见”)发布,把在全国全面开花的智慧城市建设继续推向了一个新的高潮。在“意见”中明确指出,智慧城市是运用物联网、云计算、大数据、空间地理信息集成等新一代信息技术,促进城市规划、建设、管理和服务智慧化的新理念和新模式。建设智慧城市,对加快工业化、信息化、城镇化、农业现代化融合,提升城市可持续发展能力具有重要意义。相较于政务信息化阶段,本阶段是政务网络化,“整合”、“协同”、“互联”、“云化”、“智慧”是其关键词。2016年12月,在《国务院办公厅关于印发“互联网+政务服务”技术体系建设指南的通知》中,“政务互联网+”成为电子政务发展的新契机。
第三阶段:以大数据、机器智能、区块链等技术应用为特征的新阶段,即现阶段。在政务信息化和智慧城市建设的基础上,政府越来越重视政务数据的综合治理、价值创造以及基于政务数据的模式创新。政务作业一体化、模型驱动的治理监管和智慧决策是其新的发展重点,政务数据化是其主要特征,未来必然实现数据的自治。
自2015年至今,在国家中央政府层面,《国务院关于印发促进大数据发展行动纲要的通知》 、《国务院关于印发“十三五”国家信息化规划的通知》、《工业和信息化部关于印发大数据产业发展规划(2016-2020年)的通知》、《新一代人工智能发展规划》等关于大数据、人工智能的整体战略规划陆续浮出水面。其中,在《新一代人工智能发展规划》中,已经把“智慧城市”、“大数据”、“物联网”等技术集大成于人工智能的基础设施。可以预见,未来政务的发展方向也是会以“政务AI+”为主要方向的。与此同时,政务大数据将成为“政务AI+”的重要基石。
综合上述的电子政务发展轨迹,每个阶段都对政务大数据的蓬勃发展起到了重要的推进作用。以政务大数据的数据视角来看已经基本完成了数据积累、汇聚和数据加工、治理阶段,下一步的工作重点是政务大数据的价值创造和模式创新。纵观电子政务的整个发展脉络、历程,政务的上下文边界是围绕着政府职能的变革、行使社会治理、监管及服务的业务模式发展而不断发展和衍化的。政务大数据的上下文边界伴随着政务的上下文边界的变化而变化。政务的上下文范围可以概括为围绕政府职能所开展的“作业”、“监管”、“治理”、“决策”、“服务”。相应地,政务大数据的上下文范围可以概括为在政府职能行使过程中所产生和利用的“业务数据”、“监管数据”、“治理数据”、“决策数据”和“服务数据”五类数据。
业务作业数据:指政府机关或其他业务主体在进行业务活动开展过程中所产出或利用的数据。如在政务办公中,产出的工作文件、业务信息等。
行政监管数据:指政府机关行使监督、管理的基准数据。如合规性检查标准、业务监管控制标准等。
规范治理数据:指对政务大数据的标准化、规范化的约定,如业务数据元规范、元数据标准等,该部分数据同时服务于自上而下的“规划”、“治理”、“一致性保持”,以及自下而上的“汇聚”、“共享”、“交换”。
决策分析数据:指基于政府监管职能的决策分析规则库、决策模型、决策引擎数据,用于支撑政务大数据的决策分析能力和自学习、自优化、自提升。
综合服务数据:指给予政务大数据而组合以及创造出来的、具备新附加价值的服务数据,可以在政务活动中被再利用,也可以直接服务于使用者。
上述政务大数据上下文范围的描述并未过于照搬已有的一些用词、用语,并不具有共识性,仅仅是结合新技术的发展以及在新阶段政务本身的发展,而进行的相关思考和探索。因此,也非常欢迎更好的意见或建议以及业务交流。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29