京公网安备 11010802034615号
经营许可证编号:京B2-20210330
政务大数据的上下文范围
“上下文”是软件工程里的常用词,是“context”的直接翻译,在java等编程语言中经常出现,通常指一组环境信息、容器信息或者状态信息,类似于中文里的“语境”。而“上下文范围”这个词,最早还是在徐锋老师的需求分析师课程见到,用以描述需求的范围边界。故此,政务大数据的上下文范围即政务大数据的运行环境和执行范围。在漫谈政务大数据系列文章的序“浅谈政务大数据的本质”一文中,提到政务大数据的本质就是政务。因此,讨论政务大数据的上下文边界,就是要明确政务的上下文边界。
自20世纪80年代中期至今(近30年以来),电子政务的发展可以粗放式地分为以下三个主要的阶段:
第一阶段:政务信息化阶段,以办公自动化、专项业务应用和双门户(互联网门户、政务网统一信息/应用平台)作为建设内容的重点,以政务电子化、政府上网和政务服务一体化为主要特征。
传统的电子政务规划,可以归纳为“三网、四库、十二金”。政务的“三网”从逻辑域划分来讲,是指政务互联网(也成政府公众信息网,与互联网直接连通)、政务外网(也称政务专网,与互联网逻辑隔离[单向连通],服务于信息交换,各个部门协同的办公业务资源网)和政务内网(与互联网物理隔离、物理上不连通,一般用于机关内部办公业务)。政务的“四库”一般指人口、法人单位、空间地理和自然资源、宏观经济等四个基础数据库,后来泛称为政务信息资源库这一个库。政务的“十二金”曾经是电子政务的重要建设内容,也曾是国家电子政务应用的顶层规划,但目前几乎不怎么提了。本着捋清发展轨迹的精神,在这里还是简单回顾一下。首先,“十二金”是泛指政府行政、监管和服务工作中涉及的“十二个”重要业务信息系统,事实上数量是超过十二个的(如:金宏、金财、金农、金盾、金保、金税、金关、金水、金质、金审、金卡、金贸、金企、金信[红盾]等等)。其次,“十二金”虽然广受诟病,但其在电子政务发展过程中的作用是里程碑式的、非常重要的。
第二阶段:智慧城市阶段,以数字城市、市民一卡通、应急指挥、一站式行政服务大厅、全程网上政务服务、网格化治理、数据中心为主要建设内容,以城市整体、全局的视角,综合运用物联网、虚拟化、云计算等信息技术,提供协同、高效、综合的政务服务能力,智慧城市具体到智慧政府上,本质上是以“政务互联网+”为重要展现形式的,政务网络化是其主要特征。
2014年3月,《国家新型城镇化规划(2014-2020年)》发布,8月,《关于促进智慧城市健康发展的指导意见》(以下简称“意见”)发布,把在全国全面开花的智慧城市建设继续推向了一个新的高潮。在“意见”中明确指出,智慧城市是运用物联网、云计算、大数据、空间地理信息集成等新一代信息技术,促进城市规划、建设、管理和服务智慧化的新理念和新模式。建设智慧城市,对加快工业化、信息化、城镇化、农业现代化融合,提升城市可持续发展能力具有重要意义。相较于政务信息化阶段,本阶段是政务网络化,“整合”、“协同”、“互联”、“云化”、“智慧”是其关键词。2016年12月,在《国务院办公厅关于印发“互联网+政务服务”技术体系建设指南的通知》中,“政务互联网+”成为电子政务发展的新契机。
第三阶段:以大数据、机器智能、区块链等技术应用为特征的新阶段,即现阶段。在政务信息化和智慧城市建设的基础上,政府越来越重视政务数据的综合治理、价值创造以及基于政务数据的模式创新。政务作业一体化、模型驱动的治理监管和智慧决策是其新的发展重点,政务数据化是其主要特征,未来必然实现数据的自治。
自2015年至今,在国家中央政府层面,《国务院关于印发促进大数据发展行动纲要的通知》 、《国务院关于印发“十三五”国家信息化规划的通知》、《工业和信息化部关于印发大数据产业发展规划(2016-2020年)的通知》、《新一代人工智能发展规划》等关于大数据、人工智能的整体战略规划陆续浮出水面。其中,在《新一代人工智能发展规划》中,已经把“智慧城市”、“大数据”、“物联网”等技术集大成于人工智能的基础设施。可以预见,未来政务的发展方向也是会以“政务AI+”为主要方向的。与此同时,政务大数据将成为“政务AI+”的重要基石。
综合上述的电子政务发展轨迹,每个阶段都对政务大数据的蓬勃发展起到了重要的推进作用。以政务大数据的数据视角来看已经基本完成了数据积累、汇聚和数据加工、治理阶段,下一步的工作重点是政务大数据的价值创造和模式创新。纵观电子政务的整个发展脉络、历程,政务的上下文边界是围绕着政府职能的变革、行使社会治理、监管及服务的业务模式发展而不断发展和衍化的。政务大数据的上下文边界伴随着政务的上下文边界的变化而变化。政务的上下文范围可以概括为围绕政府职能所开展的“作业”、“监管”、“治理”、“决策”、“服务”。相应地,政务大数据的上下文范围可以概括为在政府职能行使过程中所产生和利用的“业务数据”、“监管数据”、“治理数据”、“决策数据”和“服务数据”五类数据。
业务作业数据:指政府机关或其他业务主体在进行业务活动开展过程中所产出或利用的数据。如在政务办公中,产出的工作文件、业务信息等。
行政监管数据:指政府机关行使监督、管理的基准数据。如合规性检查标准、业务监管控制标准等。
规范治理数据:指对政务大数据的标准化、规范化的约定,如业务数据元规范、元数据标准等,该部分数据同时服务于自上而下的“规划”、“治理”、“一致性保持”,以及自下而上的“汇聚”、“共享”、“交换”。
决策分析数据:指基于政府监管职能的决策分析规则库、决策模型、决策引擎数据,用于支撑政务大数据的决策分析能力和自学习、自优化、自提升。
综合服务数据:指给予政务大数据而组合以及创造出来的、具备新附加价值的服务数据,可以在政务活动中被再利用,也可以直接服务于使用者。
上述政务大数据上下文范围的描述并未过于照搬已有的一些用词、用语,并不具有共识性,仅仅是结合新技术的发展以及在新阶段政务本身的发展,而进行的相关思考和探索。因此,也非常欢迎更好的意见或建议以及业务交流。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21