
大数据存在于互联网之中
互联网技术从深层次、具体化的角度解读可以分为:大数据、P2P人人组织网络和两面市场。其中大数据是最重要的因素之一。金融没有类似实物的物理生产、仓储、物流等过程,但其本身是数据的生产、仓储、挖掘、传输、分析和集成。所以大数据对于金融而言,相比其他行业,无疑是有更巨大的影响力。
大数据,是思维、技术与数据的三足鼎立。大数据不仅指规模庞大的数据,它首先是一种思维方式的变化,其次是对这些数据的处理和应用,是数据、处理技术与应用三者的统一的一列处理技术,最后,大数据的前提必然是充裕互通的数据本身。
大数据的思维方式会改变传统金融作业思维,它首先是会改变金融信贷业的抵押文化,推动信用变现成为可能和主流。尤其是中国金融行业,有着根深蒂固的抵押文化,在贷款的过程中严重依赖于抵押物,这是中小企业得不到贷款服务的很重要原因。抵押文化让贷款服务提供方在考量时思维变得简单粗暴。贷款方的考量核心是判断抵押物品的价值,确保有相应的价值空间。比如房产价值200万,那么打个7折,只要保证价值不下跌太厉害,那么就不会产生风险。房价不下跌,风险不大;房价下跌,也是国家的事情,与银行机构无关。
长期而言,抵押文化对金融业发展有相当负面的影响。要想做到真正的改变就是要强化信用贷款,建立信用机制。真正的安全不是抵押物,而是人们的信用。我们讲大数据对金融影响,首先要有思维上的认识变化。
信用看不见,摸不着,但大数据的方式可以帮助还原一个人,甚至一群人的信用轮廓,让个人或者群体的信用变得金光灿灿,触手可及。这将是根本性的改变,并产生巨大的影响。大数据的应用例子中,对于天气预报的实践是人们津津乐道的——没有人可以准确地预测天气,因为变量太多,大到日月星展,中到洋流大气,小到人的环境行为的偶然因素,都会对其产生影响,但气象学家通过气象大数据的分析,加上并行的处理技术,人们做到了从数据中找到规律,实现更准确的气象预测。个人的信用评估和实现气象预测有非常类似之处,一个人或者群体的信用好坏取决于很多的变量,而且信用本身不是静态的,而是一个动态的行为特征的体现——资产、收入、消费、个性、习惯、社交网络等等都是会对信用产生影响。个体信用正式通过各种行为决定的,但是体现一个人的信用的行为并非是全无规律的。通过大数据,可以很好地通过对个体或者群体的大量信用行为进行收集、整理、分析,只要把这些糅合在一起时,会发现很多客观规律,使得人的信用立体化,从而实现对于个体或群体信用的预计。
互联网技术革新本身也推动了大数据成为可能。云计算、SNS、移动互联网等技术的发展,使得大量数据的生产和连通变成现实;非结构化数据库技术的发展,使得数据收集的要求大大降低;存储技术的发展,使得大规模数据存储得以实现;并行处理计算,使得数据可以得到高速处理,更快获得结果、应用;各种算法、机器智能化学习的成熟等等又进一步促进大数据的应用发展。所以,我们可以做到存储处理所有数据,而不是存储抽样数据,并且可以将粒度从整体面向个体。这些也带来一系列变革——
——市场集中度更高。IT技术的发展、互联网的延伸、大数据的应用,让市场摆脱了地域的限制,从而使得更大规模的企业以更快的速度成长。而大数据在技术上的突破也会使得马太效应更加明显——强者愈强,大者愈大。如果我们还是局限于地域优势,无法有效形成对海量用户和良好的数据资产的管理,那么未来核心竞争力将会受到严重削弱。
——促进金融的开放性,大数据首先要数据全量在线。现在太多系统都是孤立的,比如很多公共事业数据,即使银行本身的很多业务,比如对公业务、对私业务、卡业务等都是相互分离的难以形成联动效应;况且决定信用本身的不单是金融数据,很多其他领域的数据也会产生影响,这对于数据的开放性要求更高。但这些数据都可以借助互联网进行联通,互联网有天生的开放性、透明性,使得大数据的应用有了可能。传统的金融业也必然会因此而变化。
——最后,还是数据本身。既然是大数据,必须要有足够的大量数据,这是一切预测的大前提。如何在预测之前收集足够多的信息,就成了预测成功与否的关键。
一切皆可“量化”,并在加速量化,几十年来IT技术的发展已经使得大量数据量化。
互联网金融对大数据的使用,天生具有优势。互联网可以在法律和道德所容许的范围内捕捉信用评估所需要的个人或群体的行为信息,并将这些繁杂的信息提供给大数据作业系统进行处理,完成对个人或群体的信用价值的评估分析。从这个角度来说,P2P在对信用大数据的使用方面更有独特优势,由于P2P两面市场的特点,决定了它可以覆盖更多的用户,同时由于充分利用了人人组织的特点,可以让用户自己产生数据,从而实现数据的自我产生和循环。使得“取之不尽,用之不竭”的数据创新成为现实。
虽然这场大数据带来的变革,还是早期,但我们可以清晰预见大数据对于金融的影响——金融服务将进一步从粗放式管理向精细化管理转型。由抵押文化向信用文化转变更全面的信用体制和风险管理体制将会建立;从“利润为中心”向“客户为中心”转型。从“关注整体”向“关注个体”转型。
我们还可以预见,真正能带来改变的互联网金融、大数据金融一定是由深谙互联网思维,立足小额信用贷款服务,涉及海量用户,注重数据资产,耐心长远的公司所推动的。只有这样,才是符合大数据的趋势,才能拥有长期的核心竞争力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18