
大数据的预测功能是增值服务的核心
从走在大数据发展前沿的互联网新兴行业,到与人类生活息息相关的医疗保健、电力、通信等传统行业,大数据浪潮无时无刻不在改变着人们的生产和生活方式。大数据时代的到来,给国内外各行各业带来诸多的变革动力和巨大价值。
最新发布的报告称,全球大数据市场规模将在未来五年内迎来高达26%的年复合增长率——从今年的148.7亿美元增长到2018年的463.4亿美元。全球各大公司、企业和研究机构对大数据商业模式进行了广泛地探索和尝试,虽然仍旧有许多模式尚不明朗,但是也逐渐形成了一些成熟的商业模式。
两种存储模式为主
互联网上的每一个网页、每一张图片、每一封邮件,通信行业每一条短消息、每一通电话,电力行业每一户用电数据等等,这些足迹都以“数据”的形式被记录下来,并以几何量级的速度增长。这就是大数据时代带给我们最直观的冲击。
正因为数据量之大,数据多为非结构化,现有的诸多存储介质和系统极大地限制着大数据的挖掘和发展。为更好地解决大数据存储问题,国内外各大企业和研究机构做了许许多多的尝试和努力,并不断摸索其商业化前景,目前形成了如下两种比较成熟的商业模式:
可扩展的存储解决方案。该存储解决方案可帮助政府、企业对存储的内容进行分类和确定优先级,高效安全地存储到适当存储介质中。而以存储区域网络(SAN)、统一存储、文件整合/网络连接存储(NAS)的传统存储解决方案,无法提供和扩展处理大数据所需要的灵活性。而以Intel、Oracle、华为、中兴等为代表的新一代存储解决方案提供商提供的适用于大、中小企业级的全系存储解决方案,通过标准化IT基础架构、自动化流程和高扩展性,来满足大数据多种应用需求。
云存储。云存储是一个以数据存储和管理为核心的云计算系统,其结构模型一般由存储层、基础管理、应用接口和访问层四层组成。通过易于使用的API,方便用户将各种数据放到云存储里面,然后像使用水电一样按用量进行收费。用户不用关心数据的存储介质、网络状况以及安全性的管理,只需按需向提供方购买空间。
源数据价值水涨船高
在红红火火的大数据时代,随着数据的累积,数据本身的价值也在不断升值,这种情况很好地反应了事物由量变到质变的规律。例如有一种罕见的疾病,得病率为十万分之一,如果从小样本数据来看非常罕见,但是扩大到全世界70亿人,那么数量就非常庞大。以前技术落后,不能将该病情数字化集中研究,所以很难攻克。但是,我们现在把各种各样的数据案例搜集起来统一分析,我们很快就能攻克很多以前想象不到的科学难题。类似的例子,不胜枚举。
正是由于可以通过大数据挖掘到很多看不见的价值,源数据本身的价值也水涨船高。一些掌握海量有效数据的公司和企业找到了一条行之有效的商业路径:对源数据直接或者经过简单封装销售。在互联网领域,以Facebook、twitter、微博为代表的社交网站拥有大量的用户和用户关系数据,这些网站正尝试以各种方式对该源数据进行商业化销售,Google、Yahoo!、百度[微博]等搜索公司拥有大量的搜索轨迹数据以及网页数据,他们可以通过简单API提供给第三方并从中盈利;在传统行业中,中国联通[微博](3.44,
0.03, 0.88%)、中国电信[微博]等运营商拥有大量的底层用户资料,可以通过简单地去隐私化,然后进行销售盈利。
各大公司或者企业通过提供海量数据服务来支撑公司发展,同时以免费的服务补偿用户,这种成熟的商业模式经受住了时间的考验。但是对于任何用户数据的买卖,还需处理好用户隐私信息,通过去隐私化方式,来保护好用户隐私。
预测是增值服务的核心
在大数据基础上进行深度挖掘,所衍生出来的增值服务,是大数据领域最具想象空间的商业模式。大数据增值服务的核心是什么?预测!大数据引发了商业分析模式转变,从过去的样本模式到现在的全数据模式,从过去的小概率到现在的大概率,从而能够得到比以前更准确的预测。目前形成了如下几种比较成熟的商业模式。
个性化的精准营销。一提起“垃圾短信”,大家都很厌烦,这是因为本来在营销方看来是有价值的、“对”的信息,发到了“错”的用户手里。通过对用户的大量的行为数据进行详细分析,深度挖掘之后,能够实现给“对”的用户发送“对”的信息。比如大型商场可以对会员的购买记录进行深度分析,发掘用户和品牌之间的关联。然后,当某个品牌的忠实用户收到该品牌打折促销的短信之后,一定不是厌烦,而是欣喜。如优捷信达、中科嘉速等拥有强大数据处理技术的公司在数据挖掘、精准广告分析等方面拥有丰富的经验。
企业经营的决策指导。针对大量的用户数据,运用成熟的数据挖掘技术,分析得到企业运营的各种趋势,从而给企业的决策提供强有力的指导。例如,汽车销售公司,可以通过对网络上用户的大量评论进行分析,得到用户最关心和最不满意的功能,然后对自己的下一代产品进行有针对性的改进,以提升消费者的满意度。
总体来说,从宏观层面来看,大数据是我们未来社会的新能源;从企业微观层面来看,大数据分析和运用能力正成为企业的核心竞争力。深入研究和积极探索大数据的商业模式,对企业的未来发展有至关重要的意义。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15