
Python字典,函数,全局变量代码解析
字典
dict1 = {'name':'han','age':18,'class':'first'}
print(dict1.keys()) #打印所有的key值
print(dict1.values()) #打印所有的values值
print("dict1['name']:",dict1['name']) #打印name相对应的value值
print(dict1.get('name')) #通过字典的get方法得到name相对应的value值
dict1['age']=28 #字典的修改相当于重新赋值!!!
dict1['address']='beijing' #字典的增加是:dict[key] = value 这样的形式
del dict1['name'] #删除字典中的一个元素
dict1.clear() #字典的清空,返回一个空字典
# del dict1 #删除字典,字典就完全删除了
字典用法注意:
1、键是不允许相同的,如果相同,后面的会覆盖前面的
2、键是不可变的,所以只能用数字、字符串、元组来担当
dict2 = {(1,2):5,"元组":(4,5)} #字典里的元素只能用不可变的数据类型!!!
print(dict2)
print(dict2['元组'])
print(dict2[(1,2)])
for i in dict2.keys(): #取出的数值更干净!!!谨记老师教导
print("字典中的key值为:",i)
for j in dict2.values():
print("字典中的values值为:",j)
函数
1、函数的定义
函数是实现特定功能而封装起来的一组语句块,可以被用户调用
2、函数的分类
自定义函数;预定义函数(系统自带,lib自带)
3、使用函数的好处
降低编程难度、将大问题分解为若干小问题、可以多次调用
4、函数语法
定义
def函数名字(参数):
函数体
return语句#不带表达式的return相当于返回none
调用
函数名字
以下是函数的几种:
#定义函数,函数名最好以_分割
def print_str(str):
print(str)
return
# 调用函数
print_str("调用一下")
# 函数传递
#所有参数在python里都是按引用传递
#一句话:要变都变!!!
def charge_me(mylist):
mylist.append([1,2,3,4])
print("函数内取值:",mylist)
return
mylist = [10,20,30]
charge_me(mylist)
print("函数外取值:",mylist) #函数外和函数内打印是相同的!!!
#函数的赋值引用
def print_info(name,age=3):
print("name",name)
print("age",age)
return
# print_info(name="xiao",age=18)
print_info(age=50,name="xiao") #python中颠倒是可以的!!!
print_info(name='haha')
#函数的不定长参数
def p_info(arg1,*vartuple):
print("输出:",arg1)
for var in vartuple:
print(var)
return
p_info(10)
p_info(70,60,50,40,30)
匿名函数lambda,了解即可
# 1、lambda只是一个表达式,而不是一个代码块,函数体比def简单很多。仅仅能在lambda表达式中封装有限的逻辑
# 2、lambda[arg1[,arg2,...argn]]:expression
sum1 = lambda arg1,arg2:arg1+arg2
print("相加后的值为:",sum1(10,20))
# return语句
def sum2(arg1,arg2):
total = arg1+arg2
print("函数内:",total)
return total #把total去掉之后返回none
abc = sum2(10,40)
print("函数外:",abc)
#全局变量和局部变量
#全局变量比较容易出问题,能不用就不用
total = 0
def sum3(a,b):
total = a+b
print("函数内(局部变量)的值为:",total)
return total
# total = sum3(10,400)
sum3(20,70)
print("函数外(全局变量)的值为:",total)
count = 1
def do_st():
global count #全局变量:global
for i in (3,4,5): #循环三次
count += 1
# print(count)
do_st()
print(count)
# 思路:当count=1时进入循环+1并赋值给count
# 在for循环三次后为3+1=4
# count是全局变量,最后打印出的结果为4
小练习
# 不能创建字典的语句是C (字典中的元素不能以列表作为key)
# A、dict1 = {}
# B、dict2 = { 3 : 5 }
# C、dict3 = {[1,2,3]: “uestc”}
# D、dict4 = {(1,2,3): “uestc”}
#以下代码输出什么?输出的是6
# 思路:原始key的值为1,
# copy给另一个字典值为1,
# 重新赋值原来的字典值为5,
# 所以相加等于6
dict1={'1':1,'2':2}
theCopy=dict1.copy()
dict1['1']=5
sum=dict1['1']+theCopy['1']
print(sum)
# 合并生成新的字典
dict1 = {3:"c", 4:"d"}
dict2 = {1:"a", 2:"b"}
dict2.update(dict1) #更新添加dict1进dict2
print(dict2)
# 标准日期输出
a = "20170303"
b = a[:4]
c = a[4:6] #构思:通过列表分割的方式实现
d = a[6:]
print("格式化后输出的日期是:%s年%s月%s日"%(b,c,d))
无return函数,返回什么?
答:在函数中无return函数,返回none
如何在一个function里面设置一个全局的变量?
答:在函数体内定义一个全局的函数global
#随机生成验证码的两种方式:
import random
list1=[]
for i in range(65,91):
list1.append(chr(i)) #通过for循环遍历asii追加到空列表中
for j in range(97,123):
list1.append(chr(j))
for k in range(48,58):
list1.append(chr(k))
ma = random.sample(list1,6)
print(ma) #获取到的为列表
ma = ''.join(ma) #将列表转化为字符串
print(ma)
import random,string
str1 = "0123456789"
str2 = string.ascii_letters
str3 = str1+str2
ma1 = random.sample(str3,6)
ma1 = ''.join(ma1)
print(ma1) #通过引入string模块和random模块使用现有的方法
总结
以上就是本文关于Python字典,函数,全局变量代码解析的全部内容,希望对大家有所帮助
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04