
Python实现字符串匹配算法代码示例
字符串匹配存在的问题
Python中在一个长字符串中查找子串是否存在可以用两种方法:一是str的find()函数,find()函数只返回子串匹配到的起始位置,若没有,则返回-1;二是re模块的findall函数,可以返回所有匹配到的子串。
但是如果用findall函数时需要注意字符串中存在的特殊字符
蛮力法字符串匹配:
将模式对准文本的前m(模式长度)个字符,然后从左到右匹配每一对对应的字符,直到全部匹配或遇到一个不匹配的字符。后一种情况下,模式向右移一位。
代码如下:
def string_match(string, sub_str):
# 蛮力法字符串匹配
for i in range(len(string)-len(sub_str)+1):
index = i # index指向下一个待比较的字符
for j in range(len(sub_str)):
if string[index] == sub_str[j]:
index += 1
else:
break
if index-i == len(sub_str):
return i
return -1
if __name__ == "__main__":
print(string_match("adbcbdc", "dc"))
最坏情况下,该算法属于Θ(nm),事实上,该算法的平均效率比最差效率好得多。事实上在查找随机文本的时候,其属于线性的效率Θ(n)。
Horspool算法:
Horsepool算法是Boyer-Moore算法的简化版本,这也是一个空间换时间的典型例子。算法把模式P和文本T的开头字符对齐,从模式的最后一个字符开始比较,如果尝试比较失败了,它把模式向后移。每次尝试过程中比较是从右到左的。
在蛮力算法中,模式的每一次移动都是一个字符,Horspool算法的核心思想是利用空间来换取时间,提升模式匹配窗口的移动幅度。与蛮力算法不同的是,其模式的匹配是从右到左的,通过预先算出每次移动的距离并存于表中。
代码如下:
__author__ = 'Wang'
from collections import defaultdict
def shift_table(pattern):
# 生成 Horspool 算法的移动表
# 当前检测字符为c,模式长度为m
# 如果当前c不包含在模式的前m-1个字符中,移动模式的长度m
# 其他情况下移动最右边的的c到模式最后一个字符的距离
table = defaultdict(lambda: len(pattern))
for index in range(0, len(pattern)-1):
table[pattern[index]] = len(pattern) - 1 - index
return table
def horspool_match(pattern, text):
# 实现 horspool 字符串匹配算法
# 匹配成功,返回模式在text中的开始部分;否则返回 -1
table = shift_table(pattern)
index = len(pattern) - 1
while index <= len(text) - 1:
print("start matching at", index)
match_count = 0
while match_count < len(pattern) and pattern[len(pattern)-1-match_count] == text[index-match_count]:
match_count += 1
if match_count == len(pattern):
return index-match_count+1
else:
index += table[text[index]]
return -1
if __name__ == "__main__":
print(horspool_match("barber", "jim_saw_me_in_a_barbershopp"))
显然,Horspool算法的最差效率属于属于Θ(nm)。在查找随机文本的时候,其属于线性的效率Θ(n)。虽然效率类型相同,但平均来说,Horspool算法比蛮力算法快很多。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04