
浅谈大数据时代的IT建设
现在已经进入大数据时代,大数据既能促进信息消费,又能带动社会管理创新。当然,大多数企业早已认识到大数据对产业的影响,只是面临着大数据落地的难题。在商业应用层面,维克托·迈尔·舍恩伯格在其所着的《大数据时代》一书中通过大量的实例进行阐释;而在技术层面,互联网巨头有着得天独厚的优势。比如这次的讲解人李彦宏所代表的百度,其搜索技术应用于大数据就是顺理成章的事情。
在互联网和IT行业之外的传统行业也在关注大数据,传统企业希望通过大数据技术指导企业战略,了解产业发展、商业模式、市场竞争中成功的关键要素,进而提高企业核心能力。然而,传统企业不具备互联网企业对数据信息的敏感度,它们产生海量的数据却不能有效利用数据,或者说数据产生、收集、存储都可能是数据链条的末端,有关数据的进程便完全停止。所以,传统企业需要在大数据背景下实现转型。在今天,新技术不断地颠覆传统产业,企业深知“慢一拍”会是什么后果——柯达被数码时代抛弃,诺基亚被智能机时代抛弃,苏宁在电商时代匆忙追赶,电信在互联网时代寻求突破各行各业的企业都可能在大数据时代掉队,反过来也有机会得以焕发青春。
大数据时代,所有的企业都将由数据驱动,数据将成为企业和公共组织越来越重要的资产。同时,企业更需要高效的大数据工具,让数据资产产生真正的价值。在这个时候,人们首先会朝着互联网企业看过去。互联网产业是信息产业,是数据产业,它们生产、交换、再次加工以及最终呈现到用户面前的“产品”都是数据。因此,在大数据时代,有学者提出“泛互联网化”的思路,以实践收集数据资产、发挥大数据商业价值。这正是广义上的物联网的概念,数据产生、收集、传输、存储、处理都实现互联网化,各行各业都互联网化。
在这个大背景下,企业实现大数据的步骤变得明朗起来。在企业明确自己的大数据项目计划之后,下一步便是实施满足大数据要求的IT建设。
面向云计算的企业IT建设
大数据离不开云计算的支持,云计算是大数据诞生的前提和必要条件。
目前,已经发展成熟的云计算拥有强大的计算、存储能力,可以作为大数据集中采集和存储数据的基础。云计算和大数据的关系可以理解为:云计算为大数据提供了计算能力、存储空间和访问通道,而大数据则是云计算的终极应用。
大数据时代的第一定律是“样本即全体”。随着数据获取、整理、挖掘的成本伴随着摩尔定律不断降低,借助于IT公司提供的数据分析工具,企业将有可能获得产业链上下游的全部数据,从而将企业的市场决策、供应链管控、内部管理的效率提高到前所未有的程度。在IT系统的建设过程中,企业首先面临的最大困难是在内部解决数据的产生、收集以及存储问题。当然,此时的数据也可能不够大,但面临的问题没有本质区别。很明显,能够建设完整大数据IT系统的企业凤毛麟角,大多数企业(特别是传统企业)也没有这个必要,因为大数据对于它们来说是辅助而非核心业务。企业可以选择将部分业务外包出去,再将生成的数据传输回来,但这时又要面临数据的传输问题。总之,大数据IT建设之前,要考虑哪一部分是本地建设,哪一部分置之云端。
模式一旦确定,平台的选择便成为关键,选择哪一种数据分析工具,哪一种数据库,哪一类云服务等等。不同的行业、不同的企业建设大数据IT系统的方案不尽相同,这里不作展开讨论。不过,对大数据IT系统在软硬件方面的一些发展趋势,企业需要重点关注。因为IT技术的发展日新月异,选择一个具有竞争力和强大生命力的平台,企业才能少走弯路,才能真正从投资中获益。
数据仓库特殊性尤为重要
对于大多数企业而言,大数据意味着为长年维护且尘封已久的数据仓库配备一道可访问的大门。
数据仓库过去一直是、未来也将仍然是企业级机构所不可或缺的关键性组成部分。这类系统的作用是将企业方方面面产生的数据汇聚起来,然后分门别类加以划分,最终让这些纷繁复杂的信息成为业务分析师深入了解企业运营状况的宝贵资料。一套针对可扩展性而精心设计出的基础设施正是大数据能否真正发挥作用的关键所在。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15