京公网安备 11010802034615号
经营许可证编号:京B2-20210330
浅谈大数据时代的IT建设
现在已经进入大数据时代,大数据既能促进信息消费,又能带动社会管理创新。当然,大多数企业早已认识到大数据对产业的影响,只是面临着大数据落地的难题。在商业应用层面,维克托·迈尔·舍恩伯格在其所着的《大数据时代》一书中通过大量的实例进行阐释;而在技术层面,互联网巨头有着得天独厚的优势。比如这次的讲解人李彦宏所代表的百度,其搜索技术应用于大数据就是顺理成章的事情。
在互联网和IT行业之外的传统行业也在关注大数据,传统企业希望通过大数据技术指导企业战略,了解产业发展、商业模式、市场竞争中成功的关键要素,进而提高企业核心能力。然而,传统企业不具备互联网企业对数据信息的敏感度,它们产生海量的数据却不能有效利用数据,或者说数据产生、收集、存储都可能是数据链条的末端,有关数据的进程便完全停止。所以,传统企业需要在大数据背景下实现转型。在今天,新技术不断地颠覆传统产业,企业深知“慢一拍”会是什么后果——柯达被数码时代抛弃,诺基亚被智能机时代抛弃,苏宁在电商时代匆忙追赶,电信在互联网时代寻求突破各行各业的企业都可能在大数据时代掉队,反过来也有机会得以焕发青春。
大数据时代,所有的企业都将由数据驱动,数据将成为企业和公共组织越来越重要的资产。同时,企业更需要高效的大数据工具,让数据资产产生真正的价值。在这个时候,人们首先会朝着互联网企业看过去。互联网产业是信息产业,是数据产业,它们生产、交换、再次加工以及最终呈现到用户面前的“产品”都是数据。因此,在大数据时代,有学者提出“泛互联网化”的思路,以实践收集数据资产、发挥大数据商业价值。这正是广义上的物联网的概念,数据产生、收集、传输、存储、处理都实现互联网化,各行各业都互联网化。
在这个大背景下,企业实现大数据的步骤变得明朗起来。在企业明确自己的大数据项目计划之后,下一步便是实施满足大数据要求的IT建设。
面向云计算的企业IT建设
大数据离不开云计算的支持,云计算是大数据诞生的前提和必要条件。
目前,已经发展成熟的云计算拥有强大的计算、存储能力,可以作为大数据集中采集和存储数据的基础。云计算和大数据的关系可以理解为:云计算为大数据提供了计算能力、存储空间和访问通道,而大数据则是云计算的终极应用。
大数据时代的第一定律是“样本即全体”。随着数据获取、整理、挖掘的成本伴随着摩尔定律不断降低,借助于IT公司提供的数据分析工具,企业将有可能获得产业链上下游的全部数据,从而将企业的市场决策、供应链管控、内部管理的效率提高到前所未有的程度。在IT系统的建设过程中,企业首先面临的最大困难是在内部解决数据的产生、收集以及存储问题。当然,此时的数据也可能不够大,但面临的问题没有本质区别。很明显,能够建设完整大数据IT系统的企业凤毛麟角,大多数企业(特别是传统企业)也没有这个必要,因为大数据对于它们来说是辅助而非核心业务。企业可以选择将部分业务外包出去,再将生成的数据传输回来,但这时又要面临数据的传输问题。总之,大数据IT建设之前,要考虑哪一部分是本地建设,哪一部分置之云端。
模式一旦确定,平台的选择便成为关键,选择哪一种数据分析工具,哪一种数据库,哪一类云服务等等。不同的行业、不同的企业建设大数据IT系统的方案不尽相同,这里不作展开讨论。不过,对大数据IT系统在软硬件方面的一些发展趋势,企业需要重点关注。因为IT技术的发展日新月异,选择一个具有竞争力和强大生命力的平台,企业才能少走弯路,才能真正从投资中获益。
数据仓库特殊性尤为重要
对于大多数企业而言,大数据意味着为长年维护且尘封已久的数据仓库配备一道可访问的大门。
数据仓库过去一直是、未来也将仍然是企业级机构所不可或缺的关键性组成部分。这类系统的作用是将企业方方面面产生的数据汇聚起来,然后分门别类加以划分,最终让这些纷繁复杂的信息成为业务分析师深入了解企业运营状况的宝贵资料。一套针对可扩展性而精心设计出的基础设施正是大数据能否真正发挥作用的关键所在。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21