京公网安备 11010802034615号
经营许可证编号:京B2-20210330
上汽乘用车利用工业大数据引领尺寸工程新征程
上汽乘用车在产销量高速增长的同时,他们的质量体系也在不断地完善和提升,尤其是在车身制造尺寸工程方面,紧扣着“中国制造2025”的国家战略方针,已逐步实现质量管理的数字化、自动化和智能化,工业大数据全面应用成果显著。
工业大数据,不仅仅是大量的数据,而是囊括了和制造相关各个阶段、多个维度的数据,并且找出这些数据之间相互的影响关系,保证最终产品的质量。
汽车车身制造工艺异常复杂,需要通过上百道工序,将几百个零部件拼接成一个完整的白车身,其中的尺寸精度质量是一项复杂、系统的工作。并且车身的尺寸精度影响着整车零部件安装、四轮定位、匹配、密封等一系列的功能。据统计,整车80%的质量问题都是由于尺寸精度的原因引起,因此尺寸工程是他们质量工作的重要内容。为此,我们走访了上汽乘用车在制造过程中与车身尺寸精度密切相关的制造车间、样板科、上汽质保部、车身SQE等部门的相关人员,来全方面了解他们如何将工业大数据应用到尺寸工程中,提高车身制造的尺寸精度。
上汽乘用车在尺寸工程方面的工业大数据应用主要包含以下方面:
一、建成了完备的数据采集体系,包括多种产品测量装置、工艺数据收集体系以及现场实时数据收集方式。
1、在各个生产过程中部署多种测量设备:在线激光检测设备、现场检具测量设备、三坐标设备、白光测量设备、关节臂测量仪、激光跟踪仪、现场模拟装置、手持式检具、内间隙电子测量仪、主模型以及间隙面差测量仪等。这些测量设备布置在车身制造的各个环节,全方面收集制造过程中的产品数据;
3、改善数据收集方式。使用移动APP实时收集现场的数据,利用移动APP,现场人员可以随时记录发生的事件、质量问题以及现场测量数据;
二、通过部署积梦智能数据分析平台来管理上述所有的数据。
上面提到上汽乘用车通过不同设备和方式采集了大量的数据,然而这些数据格式各不相同,以往传统的方式很难将它们统一管理应用。目前他们采用积梦的数据分析平台,将这些数据都管理到这一个平台系统。通过积梦数据平台的处理,所有的数据不再是信息孤岛,所有相关部门都可以上传并查看数据。
三、全面有效地管理供应商产品数据。
供应商数据也是影响产品最终质量的关键因素,以往供应商数据都是零散提供,不能做有效地统计分析,并且对供应商数据的正确性也不能有效把控。如今各个供应商通过网络直接将数据上传到数据分析平台中,上汽可以对这些数据做长期的追溯分析。并且设置统计算法,当供应商数据造假或有手动修改,系统会产生提示信息或拒绝数据上传。利用这一功能,SQE能更加有效地管理供应商质量。
四、利用积梦数据分析平台,多维度评价产品质量状态和生产工艺状态。
1、合格率评价
即是通过比较车身各个关键点的设计坐标值与实际坐标值的偏差来判断其尺寸的好坏。合格率是一个对单产品的质量进行评价的指标。计算方法是以各点测量偏差数据与公差带进行比较,如果测量偏差值落在公差范围内,则该测点合格,否则为不合格。一各产品上所有测点中合格点数与测点总数的比值即为通过率。合格率公式为:
合格率=控制范围内的测点数/总测点数x100%
通过计算出一个零件合格率的大小,来总体评估该零件的尺寸状态。
上汽乘用车评价产品合格率包括常规尺寸合格率和功能尺寸合格。
尺寸的稳定性也是上汽乘用车评价产品的一个重要指标。产品的稳定性不仅影响产品尺寸的优化,也会影响整车地许多后续工艺过程。
(1)、单点稳定性
通过计算一定时间段内某一点波动值6σ的大小,来评价该点这段时间内的稳定性,6σ越小,则该点这一时间段稳定性越好。
(2)、整车稳定性
a、将所有测点的波动值6σ由小到大排序 ,如下图
b、以全部测点的第95%个点的波动值6σ为标准画出一条分界线,取第该波动值作为车身某段时间内的的CII(不断改进)值来评价其稳定性,CII值越小,则整车稳定性越好。
3、评价工艺过程能力
对产品评价的同时,上汽乘用车也计算Cp/Cpk/Pp/Ppk对生产过程进行评价。
(1)含义
Cp:指稳定过程的能力指数,它把过程能力与由公差表示的最大可允许的变差进行比较,该指数反映了过程是否能够很好地满足变化要求。Cp不受过程位置的影响。
Cpk:稳定过程的能力指数,它考虑了过程的位置和能力,对于双边公差,Cpk总是小于或等于Cp。
Pp:指过程性能指数,它把过程性能与由公差表示的最大可允许的变差进行比较。该指数反映了过程是否能够很好地满足变化要求。Pp不受过程位置的影响。
Ppk:指过程性能指数,它考虑了过程的位置和性能。对于双边公差,Ppk总是小于或等于Pp。
(2)他们的计算公式:
五、导入数据平台的数据,经过预处理后,基于他们的质量评价体系,他们会利用软件平台中的组件,制作和发布多种报表,来反映产品质量状态和生产工艺状态。利用该应用,质保部制作和发布质量报表的效率大幅提升。
六、质量实时问题报警
在积梦数据分析平台中设置了多种数据判断条件来防止有质量问题的产品流入下道工序。在产品测量的同时,如果系统发现有测量数值触发了设置的条件,会自动即时将信息通过短信、邮件或者微信传送到相关人员。例如,某些关键点的数据一旦超差就会影响后期的安装匹配,当报警信息发送到工程师,工程会及时响应,能够避免批量的缺陷产生。还有,可以通过SPC判异规则预设报警条件,防止工装磨损、班次差异等引发产品的质量问题。
实时问题报警是上汽乘用车应用工业大数据典型的案例。它有效地防止制造车间将缺陷产品流入下道工序。
七、由于收集了各个方面、多个生产过程的数据,上汽乘用车的质量工程师利用积梦数据分析系统中常见的质量工具来分析数据,如趋势图、控制图、排列图、直方图、相关性分析等。利用这些工具,用户可以从不同的方面来了解产品的质量状态,来查找产品质量的变化趋势。
以最简单的趋势图分析为例,当他们从系统中发现数据有规律性的周期变化后,可以在系统中查找与之变化规律性相同的工艺事件,再分析该工艺事件可能产品数据变化的潜在原因,最终找出根本原因。
另外,在系统中计算整个车身上所有点之间的相关关系,可以通过分析,找出一直强相关的点,来优化测量方案,即对于一直强相关的点,只需要监控其中的一个点,其数值即能代表另一点的状态,从而达到节省测量资源的目的。
另外,利用数据的相关性分析,能快速找到质量问题的原因。如下图所示,某白车身上右侧围上两个测点的6σ一直保持较大的数值,现在需要查找原因,降低他们的波动值。
从工艺上分析,该总成由前后两部分在分拼工位上拼接而成,而总成又在总拼工位上与其它总成拼成白车身,我们需要找到造成这两点波动的来源。
先观察该总成上测点分布情况,下图为总成上测点的分布位置:
下表为各测点两两的相关性系数:
在这个案例中,工程师去分拼工位排查问题时发现,在该工位有一辅助定位销与一夹头的闭合顺序颠倒,工程师调整之后,状态随即大幅改善。利用数据分析工具和工业大数据分析和解决问题,大大提高了样板部门解决问题的效率。
综上,上汽在利用工业大数据做提升车身尺寸精度的过程中,主要从以下几个方面着手:
1、充分布置监控手段,尽可能收集制造过程中的各类数据,做到信息收集无盲点;
2、通过统一质量管理系统——积梦数据分析平台的应用,结合信息关联、工作流、报告与工具,完成数据的及时处理和有效分析。
在将来,上汽乘用车会进一步利用积梦数据分析平台,实现全生命周期的大数据管理应用。包括更全面、更有效地采集供应商数据;另外,在整车售后过程中,收集客户抱怨和返修数据,将这些数据充分反馈到制造过程中来,更有效提高制造产品的质量。并且将制造过程数据与售后数据有效反馈到研发部门,帮助整个研发过程质量提升。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16