
Python代理抓取并验证使用多线程实现
这里没有使用队列只是采用多线程分发对代理量不大的网页还行但是几百几千性能就很差了,感兴趣的朋友可以了解下,希望对你有所帮助
没有使用队列,也没有线程池还在学习只是多线程
输出:
一共获取 31 个代理
********************************************************************************
开始创建线程处理.....
正在验证 : 122.10.48.13
正在验证 : 122.72.76.121
正在验证 : 122.72.11.129
正在验证 : 222.89.159.131
正在验证 : 218.5.74.174
正在验证 : 218.203.107.165
正在验证 : 219.224.101.81
正在验证 : 221.176.169.14
正在验证 : 112.5.254.85
正在验证 : 113.106.73.210
正在验证 : 114.247.21.212
正在验证 : 122.72.76.122
正在验证 : 219.239.26.23
正在验证 : 222.89.154.14
正在验证 : 58.67.147.197
正在验证 : 222.188.88.26
正在验证 : 103.247.16.241
正在验证 : 183.221.250.141
正在验证 : 183.221.250.137
正在验证 : 122.72.80.108
正在验证 : 122.72.76.125
正在验证 : 122.72.11.131
正在验证 : 122.72.80.101
正在验证 : 122.72.120.41
正在验证 : 122.72.120.38
正在验证 : 122.72.120.35
正在验证 : 218.203.105.26
正在验证 : 221.130.18.211
正在验证 : 110.77.236.48
正在验证 : 218.91.206.146
正在验证 : 211.162.16.210
成功采集 114.247.21.212 0.300999879837
成功采集 218.203.105.26 0.306999921799
成功采集 221.176.169.14 0.417000055313
成功采集 122.72.120.35 0.369999885559
采集失败 218.5.74.174 :timeout
成功采集 122.72.120.38 0.40900015831
成功采集 183.221.250.137 0.608999967575
成功采集 122.72.11.131 0.679999828339
成功采集 183.221.250.141 0.791000127792
成功采集 113.106.73.210 0.891000032425
成功采集 122.72.76.121 1.40299987793
成功采集 122.72.80.108 1.4470000267
成功采集 211.162.16.210 1.625
成功采集 122.72.76.125 1.6819999218
成功采集 112.5.254.85 1.74399995804
成功采集 122.72.80.101 1.79799985886
成功采集 122.72.11.129 2.00900006294
成功采集 122.72.120.41 1.99099993706
采集失败 222.188.88.26 :timeout
成功采集 122.72.76.122 3.49100017548
成功采集 218.91.206.146 3.66000008583
成功采集 122.10.48.13 3.91799998283
成功采集 222.89.154.14 3.93499994278
成功采集 222.89.159.131 3.99699997902
成功采集 221.130.18.211 3.99500012398
采集失败 219.224.101.81 :timeout采集失败 218.203.107.165 :timeout
采集失败 58.67.147.197 :timeout
采集失败 103.247.16.241 :timeout
采集失败 110.77.236.48 :timeout
成功采集 219.239.26.23 12.2809998989
获取有效代理 24 个,现在开始排序和保存
总共用时 13.2810001373
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04