京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Python代理抓取并验证使用多线程实现
这里没有使用队列只是采用多线程分发对代理量不大的网页还行但是几百几千性能就很差了,感兴趣的朋友可以了解下,希望对你有所帮助
没有使用队列,也没有线程池还在学习只是多线程
输出:
一共获取 31 个代理
********************************************************************************
开始创建线程处理.....
正在验证 : 122.10.48.13
正在验证 : 122.72.76.121
正在验证 : 122.72.11.129
正在验证 : 222.89.159.131
正在验证 : 218.5.74.174
正在验证 : 218.203.107.165
正在验证 : 219.224.101.81
正在验证 : 221.176.169.14
正在验证 : 112.5.254.85
正在验证 : 113.106.73.210
正在验证 : 114.247.21.212
正在验证 : 122.72.76.122
正在验证 : 219.239.26.23
正在验证 : 222.89.154.14
正在验证 : 58.67.147.197
正在验证 : 222.188.88.26
正在验证 : 103.247.16.241
正在验证 : 183.221.250.141
正在验证 : 183.221.250.137
正在验证 : 122.72.80.108
正在验证 : 122.72.76.125
正在验证 : 122.72.11.131
正在验证 : 122.72.80.101
正在验证 : 122.72.120.41
正在验证 : 122.72.120.38
正在验证 : 122.72.120.35
正在验证 : 218.203.105.26
正在验证 : 221.130.18.211
正在验证 : 110.77.236.48
正在验证 : 218.91.206.146
正在验证 : 211.162.16.210
成功采集 114.247.21.212 0.300999879837
成功采集 218.203.105.26 0.306999921799
成功采集 221.176.169.14 0.417000055313
成功采集 122.72.120.35 0.369999885559
采集失败 218.5.74.174 :timeout
成功采集 122.72.120.38 0.40900015831
成功采集 183.221.250.137 0.608999967575
成功采集 122.72.11.131 0.679999828339
成功采集 183.221.250.141 0.791000127792
成功采集 113.106.73.210 0.891000032425
成功采集 122.72.76.121 1.40299987793
成功采集 122.72.80.108 1.4470000267
成功采集 211.162.16.210 1.625
成功采集 122.72.76.125 1.6819999218
成功采集 112.5.254.85 1.74399995804
成功采集 122.72.80.101 1.79799985886
成功采集 122.72.11.129 2.00900006294
成功采集 122.72.120.41 1.99099993706
采集失败 222.188.88.26 :timeout
成功采集 122.72.76.122 3.49100017548
成功采集 218.91.206.146 3.66000008583
成功采集 122.10.48.13 3.91799998283
成功采集 222.89.154.14 3.93499994278
成功采集 222.89.159.131 3.99699997902
成功采集 221.130.18.211 3.99500012398
采集失败 219.224.101.81 :timeout采集失败 218.203.107.165 :timeout
采集失败 58.67.147.197 :timeout
采集失败 103.247.16.241 :timeout
采集失败 110.77.236.48 :timeout
成功采集 219.239.26.23 12.2809998989
获取有效代理 24 个,现在开始排序和保存
总共用时 13.2810001373
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01