京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Python代理抓取并验证使用多线程实现
这里没有使用队列只是采用多线程分发对代理量不大的网页还行但是几百几千性能就很差了,感兴趣的朋友可以了解下,希望对你有所帮助
没有使用队列,也没有线程池还在学习只是多线程
输出:
一共获取 31 个代理
********************************************************************************
开始创建线程处理.....
正在验证 : 122.10.48.13
正在验证 : 122.72.76.121
正在验证 : 122.72.11.129
正在验证 : 222.89.159.131
正在验证 : 218.5.74.174
正在验证 : 218.203.107.165
正在验证 : 219.224.101.81
正在验证 : 221.176.169.14
正在验证 : 112.5.254.85
正在验证 : 113.106.73.210
正在验证 : 114.247.21.212
正在验证 : 122.72.76.122
正在验证 : 219.239.26.23
正在验证 : 222.89.154.14
正在验证 : 58.67.147.197
正在验证 : 222.188.88.26
正在验证 : 103.247.16.241
正在验证 : 183.221.250.141
正在验证 : 183.221.250.137
正在验证 : 122.72.80.108
正在验证 : 122.72.76.125
正在验证 : 122.72.11.131
正在验证 : 122.72.80.101
正在验证 : 122.72.120.41
正在验证 : 122.72.120.38
正在验证 : 122.72.120.35
正在验证 : 218.203.105.26
正在验证 : 221.130.18.211
正在验证 : 110.77.236.48
正在验证 : 218.91.206.146
正在验证 : 211.162.16.210
成功采集 114.247.21.212 0.300999879837
成功采集 218.203.105.26 0.306999921799
成功采集 221.176.169.14 0.417000055313
成功采集 122.72.120.35 0.369999885559
采集失败 218.5.74.174 :timeout
成功采集 122.72.120.38 0.40900015831
成功采集 183.221.250.137 0.608999967575
成功采集 122.72.11.131 0.679999828339
成功采集 183.221.250.141 0.791000127792
成功采集 113.106.73.210 0.891000032425
成功采集 122.72.76.121 1.40299987793
成功采集 122.72.80.108 1.4470000267
成功采集 211.162.16.210 1.625
成功采集 122.72.76.125 1.6819999218
成功采集 112.5.254.85 1.74399995804
成功采集 122.72.80.101 1.79799985886
成功采集 122.72.11.129 2.00900006294
成功采集 122.72.120.41 1.99099993706
采集失败 222.188.88.26 :timeout
成功采集 122.72.76.122 3.49100017548
成功采集 218.91.206.146 3.66000008583
成功采集 122.10.48.13 3.91799998283
成功采集 222.89.154.14 3.93499994278
成功采集 222.89.159.131 3.99699997902
成功采集 221.130.18.211 3.99500012398
采集失败 219.224.101.81 :timeout采集失败 218.203.107.165 :timeout
采集失败 58.67.147.197 :timeout
采集失败 103.247.16.241 :timeout
采集失败 110.77.236.48 :timeout
成功采集 219.239.26.23 12.2809998989
获取有效代理 24 个,现在开始排序和保存
总共用时 13.2810001373
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22