京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Python设计模式之观察者模式实例
关于设计模式中的观察者模式,定义如下(维基百科):
觀察者模式(有時又被稱為發布/訂閱模式)是軟體設計模式的一種。在此種模式中,一個目標物件管理所有相依於它的觀察者物件,並且在它本身的狀態改變時主動發出通知。這通常透過呼叫各觀察者所提供的方法來實現。此種模式通常被用來實作事件處理系統。
简单来说,一个被观察者有很多观察者,被观察者的状态的改变会引起所有观察者的响应操作。
那么我们用Python2.7来实现观察者模式。
Python中的集合set
集合(set),类似于列表(list),但是它没有重复的元素,它的doc内容如下:
Build an unordered collection of unique elements.
下面是在ipython中进行的几个简单的集合操作。
In [2]: myset.add(1)
In [3]: myset.add(2)
In [4]: myset.add('s')
In [5]: print myset
set([1, 2, 's'])
In [6]: myset.add('s')
In [7]: print myset
set([1, 2, 's'])
In [8]: myset.remove(3)
---------------------------------------------------------------------------
KeyError Traceback (most recent call last)
<ipython-input-8-a93073f8a2af> in <module>()
----> 1 myset.remove(3)
KeyError: 3
In [9]: myset.remove(1)
In [10]: print myset
set([2, 's'])
通过内置的set()可以产生一个空的集合对象,也可以在set中传入一些参数,例如一个列表:
最常用的方法就是add和remove了,更多内容可以参考http://docs.python.org/2/library/stdtypes.html#set。
一个简单的观察者模式的实现
if __name__ == '__main__':
foo01 = Observer("hi, i am foo01")
foo02 = Observer("hi, i am foo02")
observers = set()
observers.add(foo01)
observers.add(foo01)
observers.add(foo02)
print observers
for ob in observers:
ob.update()
下面是运行结果:
运行结果中第一行是集合observers的内容,其包含了两个Observer实例,这些实例所处的内存地址在每次运行时可能有不同。而
就可以看成多个观察者产生响应。
当然,这种实现并不好——被观察者也应该是一个实例。
更加完善的观察者模式实现
class SubjectInterface(object):
def __init__(self):
self.observers = set()
def addObserver(self, ob):
self.observers.add(ob)
def delObserver(self, ob):
self.observers.remove(ob)
def notifyObservers(self):
for ob in self.observers:
ob.update()
class Observer01(ObserverInterface):
def __init__(self, s):
self.s = s
def update(self):
print self.s
class Observer02(ObserverInterface):
def __init__(self, num1, num2):
self.num1 = num1
self.num2 = num2
def update(self):
print self.num1 + self.num2
class Subject01(SubjectInterface):
def __init__(self):
SubjectInterface.__init__(self)
if __name__ == '__main__':
ob01 = Observer01("hi, i am ob01")
ob02 = Observer02("hello,","i am ob02")
observers = set()
sb01 = Subject01()
sb01.addObserver(ob01)
sb01.addObserver(ob02)
sb01.notifyObservers()
运行结果如下:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20