
python函数装饰器用法实例详解
本文实例讲述了python函数装饰器用法。分享给大家供大家参考。具体如下:
装饰器经常被用于有切面需求的场景,较为经典的有插入日志、性能测试、事务处理等。装饰器是解决这类问题的绝佳设计,
有了装饰器,我们就可以抽离出大量函数中与函数功能本身无关的雷同代码并继续重用。概括的讲,装饰器的作用就是为已经存在的对象添加额外的功能。
#! coding=utf-8
import time
def timeit(func):
def wrapper(a):
start = time.clock()
func(1,2)
end =time.clock()
print 'used:', end - start
print a
return wrapper
@timeit
# foo = timeit(foo)完全等价,
# 使用之后,foo函数就变了,相当于是wrapper了
def foo(a,b):
pass
#不带参数的装饰器
# wraper 将fn进行装饰,return wraper ,返回的wraper 就是装饰之后的fn
def test(func):
def wraper():
print "test start"
func()
print "end start"
return wraper
@test
def foo():
print "in foo"
foo()
输出:
test start
in foo
end start
装饰器修饰带参数的函数:
def parameter_test(func):
def wraper(a):
print "test start"
func(a)
print "end start"
return wraper
@parameter_test
def parameter_foo(a):
print "parameter_foo:"+a
#parameter_foo('hello')
输出:
>>>
test start
parameter_foo:hello
end start
装饰器修饰不确定参数个数的函数:
def much_test(func):
def wraper(*args, **kwargs):
print "test start"
func(*args, **kwargs)
print "end start"
return wraper
@much_test
def much1(a):
print a
@much_test
def much2(a,b,c,d ):
print a,b,c,d
much1('a')
much2(1,2,3,4)
输出:
test start
a
end start
test start
1 2 3 4
end start
带参数的装饰器,再包一层就可以了:
def tp(name,age):
def much_test(func):
print 'in much_test'
def wraper(*args, **kwargs):
print "test start"
print str(name),'at:'+str(age)
func(*args, **kwargs)
print "end start"
return wraper
return much_test
@tp('one','10')
def tpTest(parameter):
print parameter
tpTest('python....')
输出:
in much_test
test start
one at:10
python....
end start
class locker:
def __init__(self):
print("locker.__init__() should be not called.")
@staticmethod
def acquire():
print("locker.acquire() called.(这是静态方法)")
@staticmethod
def release():
print("locker.release() called.(不需要对象实例")
def deco(cls):
'''cls 必须实现acquire和release静态方法'''
def _deco(func):
def __deco():
print("before %s called [%s]." % (func.__name__, cls))
cls.acquire()
try:
return func()
finally:
cls.release()
return __deco
return _deco
@deco(locker)
def myfunc():
print(" myfunc() called.")
myfunc()
输出:
>>>
before myfunc called [__main__.locker].
locker.acquire() called.(这是静态方法)
myfunc() called.
locker.release() called.(不需要对象实例
>>>
class mylocker:
def __init__(self):
print("mylocker.__init__() called.")
@staticmethod
def acquire():
print("mylocker.acquire() called.")
@staticmethod
def unlock():
print(" mylocker.unlock() called.")
class lockerex(mylocker):
@staticmethod
def acquire():
print("lockerex.acquire() called.")
@staticmethod
def unlock():
print(" lockerex.unlock() called.")
def lockhelper(cls):
'''cls 必须实现acquire和release静态方法'''
def _deco(func):
def __deco(*args, **kwargs):
print("before %s called." % func.__name__)
cls.acquire()
try:
return func(*args, **kwargs)
finally:
cls.unlock()
return __deco
return _deco
class example:
@lockhelper(mylocker)
def myfunc(self):
print(" myfunc() called.")
@lockhelper(mylocker)
@lockhelper(lockerex)
def myfunc2(self, a, b):
print(" myfunc2() called.")
return a + b
if __name__=="__main__":
a = example()
a.myfunc()
print(a.myfunc())
print(a.myfunc2(1, 2))
print(a.myfunc2(3, 4))
输出:
before myfunc called.
mylocker.acquire() called.
myfunc() called.
mylocker.unlock() called.
before myfunc called.
mylocker.acquire() called.
myfunc() called.
mylocker.unlock() called.
None
before __deco called.
mylocker.acquire() called.
before myfunc2 called.
lockerex.acquire() called.
myfunc2() called.
lockerex.unlock() called.
mylocker.unlock() called.
3
before __deco called.
mylocker.acquire() called.
before myfunc2 called.
lockerex.acquire() called.
myfunc2() called.
lockerex.unlock() called.
mylocker.unlock() called.
7
希望本文所述对大家的Python程序设计有所帮助。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-07-30SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-07-30人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-07-30MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-29解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-29解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-29鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-29用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-29从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-29CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-29解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-29用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-29从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-292025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-29PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-29t 检验与 Wilcoxon 检验:数据差异分析的两大核心方法 在数据分析的广阔领域中,判断两组或多组数据之间是否存在显著差异是一项 ...
2025-07-29PowerBI 添加索引列全攻略 在使用 PowerBI 进行数据处理与分析时,添加索引列是一项极为实用的操作技巧。索引列能为数据表中的每 ...
2025-07-29