
python函数装饰器用法实例详解
本文实例讲述了python函数装饰器用法。分享给大家供大家参考。具体如下:
装饰器经常被用于有切面需求的场景,较为经典的有插入日志、性能测试、事务处理等。装饰器是解决这类问题的绝佳设计,
有了装饰器,我们就可以抽离出大量函数中与函数功能本身无关的雷同代码并继续重用。概括的讲,装饰器的作用就是为已经存在的对象添加额外的功能。
#! coding=utf-8
import time
def timeit(func):
def wrapper(a):
start = time.clock()
func(1,2)
end =time.clock()
print 'used:', end - start
print a
return wrapper
@timeit
# foo = timeit(foo)完全等价,
# 使用之后,foo函数就变了,相当于是wrapper了
def foo(a,b):
pass
#不带参数的装饰器
# wraper 将fn进行装饰,return wraper ,返回的wraper 就是装饰之后的fn
def test(func):
def wraper():
print "test start"
func()
print "end start"
return wraper
@test
def foo():
print "in foo"
foo()
输出:
test start
in foo
end start
装饰器修饰带参数的函数:
def parameter_test(func):
def wraper(a):
print "test start"
func(a)
print "end start"
return wraper
@parameter_test
def parameter_foo(a):
print "parameter_foo:"+a
#parameter_foo('hello')
输出:
>>>
test start
parameter_foo:hello
end start
装饰器修饰不确定参数个数的函数:
def much_test(func):
def wraper(*args, **kwargs):
print "test start"
func(*args, **kwargs)
print "end start"
return wraper
@much_test
def much1(a):
print a
@much_test
def much2(a,b,c,d ):
print a,b,c,d
much1('a')
much2(1,2,3,4)
输出:
test start
a
end start
test start
1 2 3 4
end start
带参数的装饰器,再包一层就可以了:
def tp(name,age):
def much_test(func):
print 'in much_test'
def wraper(*args, **kwargs):
print "test start"
print str(name),'at:'+str(age)
func(*args, **kwargs)
print "end start"
return wraper
return much_test
@tp('one','10')
def tpTest(parameter):
print parameter
tpTest('python....')
输出:
in much_test
test start
one at:10
python....
end start
class locker:
def __init__(self):
print("locker.__init__() should be not called.")
@staticmethod
def acquire():
print("locker.acquire() called.(这是静态方法)")
@staticmethod
def release():
print("locker.release() called.(不需要对象实例")
def deco(cls):
'''cls 必须实现acquire和release静态方法'''
def _deco(func):
def __deco():
print("before %s called [%s]." % (func.__name__, cls))
cls.acquire()
try:
return func()
finally:
cls.release()
return __deco
return _deco
@deco(locker)
def myfunc():
print(" myfunc() called.")
myfunc()
输出:
>>>
before myfunc called [__main__.locker].
locker.acquire() called.(这是静态方法)
myfunc() called.
locker.release() called.(不需要对象实例
>>>
class mylocker:
def __init__(self):
print("mylocker.__init__() called.")
@staticmethod
def acquire():
print("mylocker.acquire() called.")
@staticmethod
def unlock():
print(" mylocker.unlock() called.")
class lockerex(mylocker):
@staticmethod
def acquire():
print("lockerex.acquire() called.")
@staticmethod
def unlock():
print(" lockerex.unlock() called.")
def lockhelper(cls):
'''cls 必须实现acquire和release静态方法'''
def _deco(func):
def __deco(*args, **kwargs):
print("before %s called." % func.__name__)
cls.acquire()
try:
return func(*args, **kwargs)
finally:
cls.unlock()
return __deco
return _deco
class example:
@lockhelper(mylocker)
def myfunc(self):
print(" myfunc() called.")
@lockhelper(mylocker)
@lockhelper(lockerex)
def myfunc2(self, a, b):
print(" myfunc2() called.")
return a + b
if __name__=="__main__":
a = example()
a.myfunc()
print(a.myfunc())
print(a.myfunc2(1, 2))
print(a.myfunc2(3, 4))
输出:
before myfunc called.
mylocker.acquire() called.
myfunc() called.
mylocker.unlock() called.
before myfunc called.
mylocker.acquire() called.
myfunc() called.
mylocker.unlock() called.
None
before __deco called.
mylocker.acquire() called.
before myfunc2 called.
lockerex.acquire() called.
myfunc2() called.
lockerex.unlock() called.
mylocker.unlock() called.
3
before __deco called.
mylocker.acquire() called.
before myfunc2 called.
lockerex.acquire() called.
myfunc2() called.
lockerex.unlock() called.
mylocker.unlock() called.
7
希望本文所述对大家的Python程序设计有所帮助。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04