京公网安备 11010802034615号
经营许可证编号:京B2-20210330
python函数装饰器用法实例详解
本文实例讲述了python函数装饰器用法。分享给大家供大家参考。具体如下:
装饰器经常被用于有切面需求的场景,较为经典的有插入日志、性能测试、事务处理等。装饰器是解决这类问题的绝佳设计,
有了装饰器,我们就可以抽离出大量函数中与函数功能本身无关的雷同代码并继续重用。概括的讲,装饰器的作用就是为已经存在的对象添加额外的功能。
#! coding=utf-8
import time
def timeit(func):
def wrapper(a):
start = time.clock()
func(1,2)
end =time.clock()
print 'used:', end - start
print a
return wrapper
@timeit
# foo = timeit(foo)完全等价,
# 使用之后,foo函数就变了,相当于是wrapper了
def foo(a,b):
pass
#不带参数的装饰器
# wraper 将fn进行装饰,return wraper ,返回的wraper 就是装饰之后的fn
def test(func):
def wraper():
print "test start"
func()
print "end start"
return wraper
@test
def foo():
print "in foo"
foo()
输出:
test start
in foo
end start
装饰器修饰带参数的函数:
def parameter_test(func):
def wraper(a):
print "test start"
func(a)
print "end start"
return wraper
@parameter_test
def parameter_foo(a):
print "parameter_foo:"+a
#parameter_foo('hello')
输出:
>>>
test start
parameter_foo:hello
end start
装饰器修饰不确定参数个数的函数:
def much_test(func):
def wraper(*args, **kwargs):
print "test start"
func(*args, **kwargs)
print "end start"
return wraper
@much_test
def much1(a):
print a
@much_test
def much2(a,b,c,d ):
print a,b,c,d
much1('a')
much2(1,2,3,4)
输出:
test start
a
end start
test start
1 2 3 4
end start
带参数的装饰器,再包一层就可以了:
def tp(name,age):
def much_test(func):
print 'in much_test'
def wraper(*args, **kwargs):
print "test start"
print str(name),'at:'+str(age)
func(*args, **kwargs)
print "end start"
return wraper
return much_test
@tp('one','10')
def tpTest(parameter):
print parameter
tpTest('python....')
输出:
in much_test
test start
one at:10
python....
end start
class locker:
def __init__(self):
print("locker.__init__() should be not called.")
@staticmethod
def acquire():
print("locker.acquire() called.(这是静态方法)")
@staticmethod
def release():
print("locker.release() called.(不需要对象实例")
def deco(cls):
'''cls 必须实现acquire和release静态方法'''
def _deco(func):
def __deco():
print("before %s called [%s]." % (func.__name__, cls))
cls.acquire()
try:
return func()
finally:
cls.release()
return __deco
return _deco
@deco(locker)
def myfunc():
print(" myfunc() called.")
myfunc()
输出:
>>>
before myfunc called [__main__.locker].
locker.acquire() called.(这是静态方法)
myfunc() called.
locker.release() called.(不需要对象实例
>>>
class mylocker:
def __init__(self):
print("mylocker.__init__() called.")
@staticmethod
def acquire():
print("mylocker.acquire() called.")
@staticmethod
def unlock():
print(" mylocker.unlock() called.")
class lockerex(mylocker):
@staticmethod
def acquire():
print("lockerex.acquire() called.")
@staticmethod
def unlock():
print(" lockerex.unlock() called.")
def lockhelper(cls):
'''cls 必须实现acquire和release静态方法'''
def _deco(func):
def __deco(*args, **kwargs):
print("before %s called." % func.__name__)
cls.acquire()
try:
return func(*args, **kwargs)
finally:
cls.unlock()
return __deco
return _deco
class example:
@lockhelper(mylocker)
def myfunc(self):
print(" myfunc() called.")
@lockhelper(mylocker)
@lockhelper(lockerex)
def myfunc2(self, a, b):
print(" myfunc2() called.")
return a + b
if __name__=="__main__":
a = example()
a.myfunc()
print(a.myfunc())
print(a.myfunc2(1, 2))
print(a.myfunc2(3, 4))
输出:
before myfunc called.
mylocker.acquire() called.
myfunc() called.
mylocker.unlock() called.
before myfunc called.
mylocker.acquire() called.
myfunc() called.
mylocker.unlock() called.
None
before __deco called.
mylocker.acquire() called.
before myfunc2 called.
lockerex.acquire() called.
myfunc2() called.
lockerex.unlock() called.
mylocker.unlock() called.
3
before __deco called.
mylocker.acquire() called.
before myfunc2 called.
lockerex.acquire() called.
myfunc2() called.
lockerex.unlock() called.
mylocker.unlock() called.
7
希望本文所述对大家的Python程序设计有所帮助。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22