
使用数据进行决策时要避免3个陷阱
如今,数据不仅仅是营销领域的一个流行语。为了实现业务运作良好,企业需要关注如何改进,有效收集和分析数据。如果获得数据并使用它却没有促进改变,那么收集数据就没什么意义了。然而,在解释和使用数据来做出决策时也存在一些问题。它不像看起来那么简单,而且有一些陷阱需要避免。
(1) 锚定和调整
锚定和调整是指放弃锚点或大量投资于某一信息的想法,然后调整锚点。通常,锚点作为一个良好的起点,但数据可能表明应该探索新的途径,以创造更好的成功。通常情况下,可以在锚点范围内收集和分析数据,这忽略了锚点本身可能是业务无法正常工作的原因。包括ValueWalk在内的专家在讨论投资者对股票市场指数波动的反应以及行为金融如何帮助他们做出决定时,会加强这一点。投资者往往希望被证明是正确的,所以在初步评估中遇到困难,而没有考虑市场进展的新信息。这种推理当然也扩展到其他应用程序,包括运行业务或实施策略。
(2) 对数据过度自信
当涉及到收集到的数据时,过度自信可能是一个陷阱。熟悉商业决策,丰富的信息数据原因,以及通过分析数据采取行动的事实,都可以结合起来,创造出一种过度自信的场景。这种情况可能会导致失败。人们对决定越熟悉,就对此感到更加自信。那么,如果这些数据导致了一个全新的目标定位活动,人们以前没有实现过,但觉得可以处理它,即使这是一个更难的选择。而这只是假设是错误的。数据给人的印象是人们有很多信息可供使用,但创建人们需要的结果并不总是有意义的。通过分析数据,人们觉得取得了进展。数据应该导致超出人们已经知道的新想法——否则,人们可能会过度自信。
(3) 因果关系与相关性
在收集和分析数据时,最重要的陷阱可能是不考虑因果关系和相关性的差异。因果关系指出X是因为Y而发生的,而相关性仅指向X和Y之间的关系。高收入和社会媒体参与之间可能存在相关性,但这并不一定意味着社交媒体的参与是高收入的原因。通过确定哪些是从哪个而不是对虚假因果作出决定,可以根据数据作出正确的决定和建议。
收集数据是有原因的,只有在分析准确的情况下才能正确地使用数据。考虑到可能导致结果倾斜的问题,因此,建议从数据中分离出来,企业可以确保它们朝着正确的方向发展。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08