
Python中的对象,方法,类,实例,函数用法分析
本文实例分析了Python中的对象,方法,类,实例,函数用法。分享给大家供大家参考。具体分析如下:
Python是一个完全面向对象的语言。不仅实例是对象,类,函数,方法也都是对象。
这段代码实际上创造了两个对象,Foo和foo。而Foo同时又是一个类,foo是这个类的实例。
在C++里类型定义是在编译时完成的,被储存在静态内存里,不能轻易修改。在Python里类型本身是对象,和实例对象一样储存在堆中,对于解释器来说类对象和实例对象没有根本上的区别。
在Python中每一个对象都有自己的命名空间。空间内的变量被存储在对象的__dict__里。这样,Foo类有一个__dict__, foo实例也有一个__dict__,但这是两个不同的命名空间。
所谓“定义一个类”,实际上就是先生成一个类对象,然后执行一段代码,但把执行这段代码时的本地命名空间设置成类的__dict__. 所以你可以写这样的代码:
所谓“定义一个函数”,实际上也就是生成一个函数对象。而“定义一个方法”就是生成一
个函数对象,并把这个对象放在一个类的__dict__中。下面两种定义方法的形式是等价的:
>>> print Foo.qux, Foo.__dict__['qux']
>>> foo = Foo()
>>> foo.bar()
2
>>> foo.qux()
3
而类继承就是简单地定义两个类对象,各自有不同的__dict__:
复杂的地方在`.`这个运算符上。对于类来说,Stilton.taste的意思是“在Stilton.__dict__中找'taste'.
如果没找到,到父类Cheese的__dict__里去找,然后到父类的父类,等等。如果一直到object仍没找到,那么扔一个AttributeError.”
实例同样有自己的__dict__:
不管__init__()是在哪儿定义的, stilton.__dict__与类的__dict__都无关。
Cheese.weight和Stilton.weight都会出错,因为这两个都碰不到实例的命名空间。而
stilton.weight的查找顺序是stilton.__dict__ => Stilton.__dict__ =>
Cheese.__dict__ => object.__dict__. 这与Stilton.taste的查找顺序非常相似,仅仅是
在最前面多出了一步。
方法稍微复杂些。
>>> print Cheese.get_weight
>>> print stilton.get_weight
<__main__.Stilton object at 0x7ff820669190>>
我们可以看到点运算符把function变成了unbound method. 直接调用类命名空间的函数和点
运算返回的未绑定方法会得到不同的错误:
但这两个错误说的是一回事,实例方法需要一个实例。所谓“绑定方法”就是简单地在调用方法时把一个实例对象作为第一个参数。下面这些调用方法是等价的:
最后一种也就是平常用的调用方式,stilton.get_weight(),是点运算符的另一种功能,将stilton.get_weight()翻译成stilton.get_weight(stilton).
这样,方法调用实际上有两个步骤。首先用属性查找的规则找到get_weight, 然后将这个属性作为函数调用,并把实例对象作为第一参数。这两个步骤间没有联系。比如说你可以这样试:
先查找weight这个属性,然后将weight做为函数调用。但weight是字符串,所以出错。要注意在这里属性查找是从实例开始的:
但是
Stilton.get_weight的查找跳过了实例对象stilton,所以查找到的是没有被覆盖的,在Cheese中定义的方法。
getattr(stilton, 'weight')和stilton.weight是等价的。类对象和实例对象没有本质区别,getattr(Cheese, 'smell')和Cheese.smell同样是等价的。getattr()与点运算符相比,好处是属性名用字符串指定,可以在运行时改变。
__getattribute__()是最底层的代码。如果你不重新定义这个方法,object.__getattribute__()和type.__getattribute__()就是getattr()的具体实现,前者用于实例,后者用以类。换句话说,stilton.weight就是object.__getattribute__(stilton, 'weight'). 覆盖这个方法是很容易出错的。比如说点运算符会导致无限递归:
__getattr__()是在__dict__查找没找到的情况下调用的方法。一般来说动态生成属性要用这个,因为__getattr__()不会干涉到其它地方定义的放到__dict__里的属性。
由于方法只不过是可以作为函数调用的属性,__getattr__()也可以用来动态生成方法,但同样要注意无限递归:
>>> print stilton.get_weight()
100g
>>> print stilton.age
Traceback (most recent call last):
File "", line 1, in
File "", line 12, in __getattr__
AttributeError: age
希望本文所述对大家的Python程序设计有所帮助。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师证书含金量几何?一文为你讲清楚 在当今数字化时代,数据成为了企业决策和发展的重要依据。数据分析师这一职业 ...
2025-06-13CDA 数据分析师:数字化时代的关键人才 在当今数字化浪潮席卷全球的时代,数据已然成为驱动企业发展、推动行业变革的核心要素。 ...
2025-06-13CDA 数据分析师报考条件全解析 在大数据和人工智能时代,数据分析师成为了众多行业追捧的热门职业。CDA(Certified Data Analyst ...
2025-06-13“纲举目张,执本末从。”若想在数据分析领域有所收获,一套合适的学习教材至关重要。一套优质且契合需求的学习教材无疑是那关键 ...
2025-06-092025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30