京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据是实施“持续安全”战略的重要法宝
9月5日,国务院印发《促进大数据发展行动纲要》,提出“大数据是推动政府治理能力现代化的内在需要和必然选择”。作为民航安全从业人员,笔者不由地思考大数据在实施“持续安全”战略中将发挥哪些作用?
大数据是实施“持续安全”战略的重要法宝。
实施“持续安全”战略,核心是完成对风险隐患的精细化、科学化和系统化管控,基础在于实现安全监管的内容、行为和结果的数据化,对安全形势研判和决策做到“心中有数”。
当前,民航业已经构建了成熟的分层级、分专业、分环节的监管体系。但在部分领域的部分环节,其数据化程度还有待提高,有的没有被完整记录,有的“沉睡”在档案室里,有的隐藏在脑海中,还有的可能模糊在印象中,离实现全行业安全监管大数据目标还有较大差距。
遗失的、“沉睡”的、隐藏的、模糊的数据难以被科学利用并发挥作用。曾有领导干部感慨:“是一年监管6000次,还是监管8000次?6000次未必出事,8000次未必不出事!”
“活着”的大数据,才能完成对安全形势的定量化分析,从而做到“用数据说话,用数据分析,用数据管理,用数据决策,用数据创新”。
因此,大数据是实现风险管控从“定性”到“定量”的跨越,实施“持续安全”战略的重要法宝。
大数据在民航安全监管中
应用的成果和不足
对民航来说,大数据并不陌生。
(一)成果方面。大数据的采集、整合、分析和利用需要信息系统的支撑,而民航作为信息技术应用的典范行业,在行业范围内有民航飞行标准监督管理系统(FSOP)、使用困难报告系统(SDR)、安全管理体系(SMS)、航空安全信息网等;在区域范围内有华东民航安全监管工作平台(ESSP)等监管协作平台,部分监管局也搭建了独立的业务信息平台。部分监管局使用较好的系统,如飞行标准监督管理系统(FSOP),已经完成了由“沉睡的数据”到“数据”,由“数据”到“大数据”的积累过程。
经过深入观察,不难发现这些领域基本实现了大数据与监管工作的相互融合及促进。一方面,日常的监管工作为大数据提供鲜活的素材。通过信息技术将日常监管的内容、动作、成果以数据化形式记录到数据库中,进而形成大数据;另一方面,大数据在为宏观的安全形势分析和决策提供强力支撑的同时,也反作用于日常监管,在促进其实现精细化、科学化、系统化的同时,还实现了业务线管理的扁平化和信息化。
(二)不足方面。主要表现为数据还不够“大”。直接原因是平台的孤立性和数据挖掘的粗线条,更深层次的原因还在于大数据离与全行业、全领域的安全监管工作融合还有较大差距。主要体现在三个方面:一是并非所有领域的监管内容都很精细,都制定了可执行、可追溯的风险清单、监管清单。二是并非对所有的监管行为都进行智能跟踪分析,对监管结果都进行可量化评估。三是并非所有的监管结果都可转化为对企业安全风险状态进行量化评估的依据。
实施持续安全战略,不仅要在意识层面上采用科学的思维方式和思想方法,还要在工作层面上从盯人、盯事件、盯岗位的传统监管模式转变到盯系统、盯组织上来。然而 ,系统、组织毕竟不同于有形的监管对象,它看不见、摸不着。在无迹可循的摸索中,如果没有大数据的支撑,我们容易陷入传统监管模式的依赖惯性和“心中无数”的纠结中。
促进大数据与监管融合
是实施“持续安全”战略的重要途径
将大数据与监管融合,也许是找到症结,促进监管转型的有益尝试。
(一)以大数据的精细化,促进制定各领域的精细的风险清单、监管清单。一方面,梳理法律、规章、政策文件、内部制度中已找到界定的风险点,另一方面,充分挖掘经验数据,梳理历年监管数据和事件、事故数据,交流总结各地监管经验,制定针对不同企业主体的风险清单和监管清单。以清单为依据,结合监察计划和监管目的,科学计算并编制监管任务,以实现对风险隐患的网状覆盖。
(二)以大数据的科学化,促进建立科学的监管效能评估模型。一方面,建立记录全流程执法行为的数据库,按照每个环节是否均有章可循,有据可查、有人负责、有人监督为标准,智能跟踪并科学评估执法行为的规范性,避免因执法标准不统一、程序不规范引发的后续问题;另一方面,进行监察工作量化评估和过错责任追究制,科学评估考核监管工作成效,防范因监管水平、能力、状态等因素造成的监管质量的起伏波动。
(三)以数据的系统化,促进建立系统的企业风险指数数据模型。一是实现对安全形势持续进行量化分析。充分利用“沉睡”在档案中历年不同企业主体的检查、整改、处罚等数据,科学建模,形成可量化、可分析的各环节的企业风险指数。二是依据风险指数,优化监管资源分配。根据风险指数的高低和变化情况,科学调配监管资源投放,并有针对性地加大监管力度,把好钢用在刀刃上。三是以指数合理性体现安全工作的经济效益。安全工作之所以难做,很重要的原因在于安全的经济效益具有天然的隐匿性,其在财务报表中并无体现。将企业风险指数与企业经营挂钩,对风险指数高的企业进行航班时刻和生产运行等方面的限制,促使生产运行主体充分认识并协调好“安全与发展、安全与效益、安全与服务、安全与正常”的关系。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06