京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Python统计列表中的重复项出现的次数的方法
本文以实例形式详细讲述了Python列表list数组array用法。分享给大家供大家参考。具体如下:
Python中的列表(list)类似于C#中的可变数组(ArrayList),用于顺序存储结构。
创建列表
代码如下:
sample_list = ['a',1,('a','b')]
Python 列表操作
代码如下:
sample_list = ['a','b',0,1,3]
得到列表中的某一个值
代码如下:
value_start = sample_list[0]
end_value = sample_list[-1]
删除列表的第一个值
代码如下:
del sample_list[0]
在列表中插入一个值
代码如下:
sample_list[0:0] = ['sample value']
得到列表的长度
代码如下:
list_length = len(sample_list)
列表遍历
代码如下:
for element in sample_list:
print(element)
Python 列表高级操作/技巧
产生一个数值递增列表
代码如下:
num_inc_list = range(30)
#will return a list [0,1,2,...,29]
用某个固定值初始化列表
代码如下:
initial_value = 0
list_length = 5
sample_list = [ initial_value for i in range(10)]
sample_list = [initial_value]*list_length
# sample_list ==[0,0,0,0,0]
附:python内置类型'
1、list:列表 (即动态数组,C++标准库的vector,但可含不同类型的元素于一个list中)
代码如下:
a = ["I","you","he","she"] #元素可为任何类型。
下标:按下标读写,就当作数组处理
以0开始,有负下标的使用
0第一个元素,-1最后一个元素,
-len第一个元 素,len-1最后一个元素
取list的元素数量
代码如下:
len(list) #list的长度。实际该方法是调用了此对象的__len__(self)方法。
创建连续的list
代码如下:
L = range(1,5) #即 L=[1,2,3,4],不含最后一个元素
L = range(1, 10, 2) #即 L=[1, 3, 5, 7, 9]
list的方法
代码如下:
L.append(var) #追加元素
L.insert(index,var)
L.pop(var) #返回最后一个元素,并从list中删除之
L.remove(var) #删除第一次出现的该元素
L.count(var) #该元素在列表中出现的个数
L.index(var) #该元素的位置,无则抛异常
L.extend(list) #追加list,即合并list到L上
L.sort() #排序
L.reverse() #倒序
list 操作符:,+,*,关键字del
代码如下:
a[1:] #片段操作符,用于子list的提取
[1,2]+[3,4] #为[1,2,3,4]。同extend()
[2]*4 #为[2,2,2,2]
del L[1] #删除指定下标的元素
del L[1:3] #删除指定下标范围的元素
list的复制
代码如下:
L1 = L #L1为L的别名,用C来说就是指针地址相同,对L1操作即对L操作。函数参数就是这样传递的
L1 = L[:] #L1为L的克隆,即另一个拷贝。
list comprehension
[ <expr1> for k in L if <expr2> ]
本文实例展示了Python统计列表中的重复项出现的次数的方法,是一个很实用的功能,适合Python初学者学习借鉴。具体方法如下:
对一个列表,比如[1,2,2,2,2,3,3,3,4,4,4,4],现在我们需要统计这个列表里的重复项,并且重复了几次也要统计出来。
方法1:
mylist = [1,2,2,2,2,3,3,3,4,4,4,4]
myset = set(mylist) #myset是另外一个列表,里面的内容是mylist里面的无重复 项
for item in myset:
print("the %d has found %d" %(item,mylist.count(item)))
方法2:
List=[1,2,2,2,2,3,3,3,4,4,4,4]
a = {}
for i in List:
if List.count(i)>1:
a[i] = List.count(i)
print (a)
利用字典的特性来实现。
方法3:
>>> from collections import Counter
>>> Counter([1,2,2,2,2,3,3,3,4,4,4,4])
Counter({1: 5, 2: 3, 3: 2})
这里再增补一个只用列表实现的方法:
l=[1,4,2,4,2,2,5,2,6,3,3,6,3,6,6,3,3,3,7,8,9,8,7,0,7,1,2,4,7,8,9]
count_times = []
for i in l :
count_times.append(l.count(i))
m = max(count_times)
n = l.index(m)
print (l[n])
其实现原理就是把列表中的每一个数出现的次数在其对应的位置记录下来,然后用max求出出现次数最多的位置。
只用这段代码的话,有一个缺点,如果有多个结果,最后的现实的结果只是出现在最左边的那一个,不过解决方法也很简单
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23