京公网安备 11010802034615号
经营许可证编号:京B2-20210330
找不到完美数据科学家?你还可以组建一支数据科学梦之
提供洞察和分析的公司都在尽力为自己组建完美的数据科学团队,这通常有两条路可以走。
大部分公司都在挣扎中选择了第一条路:寻找这些工资非常贵又很少见的独角兽人才,即同时具备这多种技能的独立个体。
完美的数据科学家完美地掌握了数学、统计学、编程以及沟通技术。这些人不光具备完成复杂工作的专业技术能力,还能够向非技术人员解释这些技术工作可能会带来的影响。
除了这些数据科学家会很昂贵的事实之外,这些天才科学家一周7天,每天24小时连轴工作也是不太可能的。
当然这不是唯一的一条路。
人类史上最早的科学家之一亚里士多德曾经说过:“整体大于它的各部分之和”,这给了我们一些启发。与其寻找这些很受欢迎的同时具备三方面技能的人,还不如挑选分别具备其中一项技能的人来组成一个团队。毕竟,没有一个人能够永远解决组织不断增长的对数据科学研究的需求。它需要一个数学家来负责深入钻研,还需要一个具备交叉学科知识的人来进行横向整合,最终组成一个完美的团队。
◆◆◆ 数据科学团队的活力
任何一个数据科学团队的终极目标就是要成为一个解决问题的机器,一个能在不断变化的环境中不断搅动出价值的团队。越来越丰富的数据给曾经无法回答的业务问题提供了可能,这就给客户对洞察复杂性的期待提升到了一个新的高度。但随着这一套连锁反应而来的却是没有成熟方法论和解决方案的问题。随着输入越来越多样化,所需要的匹配的技能同样需要变得多样化。“酷呆瓜”团队的三个特点没有一个是可以缺失的,因此这个团队的集体智慧才真正是当今数据世界的驱动力。
显然,完美数据科学家团队中的任意两块都无法独立于第三块运作。而且,挖掘并保持数据科学家团队的内部平衡才能带来最大程度的准确性和相关性。
数学家/统计学家
这些受过训练的学者在理解了相关理论以及结果所需要的条件后,基于这些输入构建起先进的模型。
程序员
这位亲自操刀的架构师负责清洗、管理以及修整数据,以及建造模拟器或其他高科技工具来使数据变得更加方便易用。
沟通者/内容专家
将技术翻译为业务的专家利用自己的全局观,基于过去的知识帮助寻找技术与用户需求的连接点。
这些技能的互相支持才使得团队变得完整,并具备完美的数据交付能力:
数学家/统计学家的工作严重依赖于程序员。“垃圾进入垃圾出去”的概念在这里非常适用,也就是说如果程序员没有清晰地获取数据、管理数据,那么科学家很难构建出有用的模型。此外,数学家和程序员又依赖于沟通者的知识。即便数据是完美的,也符合统计学结论,如果其无法直接涉及到要解决的商业问题,那么这些就是没有意义的。此外,内部不平衡的团队将会面临一些无法充实准备的困难,也无法交付出完美的作品。
◆◆◆ 是购买还是自建?
今天的世界充满了大量、高速的数据,企业都面临着一个选择。传统那些写代码来编辑调查问卷、收集数据的程序员都被整合在了具备洞察的组织中。然而,他们中的很多人都没有接受过数学或统计学的正统培训。同样地,那些面向客户并具有数值定量头脑的商务人才在团队构建中也应当有一席之地。培训现有数学或统计学人才是可行的,但漫长的过程需要极强的耐心。如果组织认可且相信他们已有的人才并且选择这条路来组建团队,这也就指向了需要填补的空白从而打造完美团队。
组织机构很久之前就知道数据的价值了,但如果没有人的参与,无论数据量有多大,细节有多深,到2019年实现数据科学300亿美金的估值都是很难的。一个互相平衡的团队对各类数据作出的解读、过滤以及修正都会加速这种成长并提升数据科学的重要性。
许多人觉得Hilary的“酷呆瓜”概念只适用于个人。但实际上,我们必须认识到团队的集体“酷”也是充满潜力的。
当组织在组建和招聘数据科学团队时,或许团队宗旨可以简单的称为“如果你能找到呆瓜,那就留住他们。但如果缺少聚集了各类独角兽人才的团队,那就创造一个。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24