
保险业三渠道让大数据红利变现
大数据时代,数据的价值究竟体现在哪里?保险公司正在用自己的探索给出答案。
据了解,泰康人寿、新华电商等,已率先开启与以BAT(百度、阿里、腾讯)为首的互联网巨头公司的数据合作,最普遍的就是将已有的保险客户数据与互联网公司的大数据进行匹配,完善保险客户的画像。同时,来自阿里金融保险事业部负责人的信息是,多家保险公司对其掌握的客户大数据表现出兴趣。
经过这些尝试,保险电商公司进行了更为有的放矢的后续操作,并初步尝到了“甜头”,不仅在营销环节,也在风控环节上。这些成果已包括,精准营销让广告投放的点击率提高360%以上,发现客户的赔付率与其芝麻信用呈现负相关关系,甚至建立骗保风险预估模型。
这仅是开始,新华电商副总裁杨亿认为,大数据将再造保险业价值链,涵盖从产品研发到营销、到理赔管理、再到资产管理的几乎全部环节。
数据与数据融合
互联网创新业务在业内处于领先地位的泰康人寿,对数据有明确定位,其董事长陈东升在2011年就提出“让数据产生红利”的方向。对于大数据,泰康总裁刘经纶认为主要有四大特征:首先是数据体量巨大,第二是数据类型繁多,第三是价值密度偏低,第四是处理的速度更快。
传统保险模式运作下,保险公司评估消费者的风险因素只有性别、年龄等简单维度,这也导致部分保险产品定价保守,且产品同质化。而在大数据时代,风险特征的描述数据极大丰富,保险公司可以通过大数据摸索更全面的风险特征,产品细分和个性化设计成为可能,并精细化风险管理和成本管控。
保险公司对于数据有本能的诉求,但简单获取数据违背商业原则,因此对数据的利用一般并不来自直接共享,而是与拥有用户大数据的互联网巨头公司之间进行数据合作,这在业内已经有了典型。
泰康人寿创新事业部业务发展部总经理毕海在今年6月份举行的第二届互联网大数据与精算创新论坛上表示,正在加深与腾讯、阿里等互联网巨头进行数据方面的合作。
近日也从新华保险的全资电商子公司新华世纪电子商务有限公司(下称“新华电商”)了解到,其正在与百度大数据合作;“大数据工场”是新华电商的三大定位之一。
同时,来自阿里金融保险事业部负责人的信息是,多家保险公司对其掌握的客户大数据表现出兴趣。
就数据合作而言,保险业与互联网公司,前者以客户获取、客户维护、客户风险评估为核心诉求,而后者的大数据在用户理解和用户洞察方面有核心优势,双方的业务结合点贯穿从营销到产品研发、再到理赔管理的全流程。
“引流”效果明显
在营销阶段,通过大数据方案,保险电商的交叉销售准确率得到提升。
通过与拥有海量客户社交数据及交易数据的互联网巨头进行大数据合作,泰康人寿的互联网创新产品正在朝精准定价的方向迈进,其从多维的甚至相对混乱的数据中进行筛查,决定保险产品是不是展现在用户面前,也就是实现精准营销。
做到这步很初级,互联网用户可能多少也都已有体会,经常在浏览网页时被推动自己关心或感兴趣的产品,但这点已很重要。
大数据+精准营销,已经被新华电商的一个案例证明,非常有效;至少在“引流”的作用上,精准营销有明显作用。毕竟,互联网业务关注的“流量”、“频率”、“价值的转换”三大要素中,“流量”为首。
已与百度大数据进行合作的新华电商,通过这种合作将保险客户的数据维度进一步丰富,让客户更立体,进一步确定出是谁在买保险,在买哪类保险,他们有什么特征。而事实也证明,这样的尝试已经初步体现出积极效益。
新华电商副总裁杨亿在日前召开的百度世界2015大会上介绍,其在和某大型保险公司的合作中,运用相关模型挖掘成功购买保险产品的高价值客户,分析高价值客户的客群特征,包括基本用户画像和上网行为等,并依此在全网扩充目标客群,最后做在线精准营销的广告投放。上线后的真实效果是,实验组广告点击率比对照组提升了361%。
杨亿称,这说明向同样规模的人群展示广告,经过大数据+精准营销,可以找到更多真正对保险感兴趣的目标客户,促成更多点击与转化。
发挥征信作用
大数据给保险电商的“甜头”没有止步于营销环节。对于以风控为核心竞争力的保险业来说,在理赔管理环节中,如何进一步发挥大数据价值也是重要课题。目前的尝试结果表明,在理赔管理中,大数据可以发挥保险征信的作用。
新华电商将百度对用户的大数据画像和新华保险的真实拒保数据进行融合,通过进行黑名单过滤、重大风险识别以及虚假信息挖掘,建立骗保风险预估模型,提升公司整体业务风险管理能力。
再比如,泰康既有的与阿里数据合作的一个结果表明,对客户的赔付率与其芝麻信用负相关。因此,具有明确数值的芝麻信用可以为其定义客户风险特征提供重要参考。
不仅如此,展望未来,杨亿称,大数据将再造保险价值链。
除了将对除了前述的营销阶段、理赔管理环节产生影响之外,其还将影响到产品研发和资产管理等重要环节。比如,在产品开发阶段,大数据助于预测出险概率、优化定价体系、并采集健康数据用于寿险价值链。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04