京公网安备 11010802034615号
经营许可证编号:京B2-20210330
保险业三渠道让大数据红利变现
大数据时代,数据的价值究竟体现在哪里?保险公司正在用自己的探索给出答案。
据了解,泰康人寿、新华电商等,已率先开启与以BAT(百度、阿里、腾讯)为首的互联网巨头公司的数据合作,最普遍的就是将已有的保险客户数据与互联网公司的大数据进行匹配,完善保险客户的画像。同时,来自阿里金融保险事业部负责人的信息是,多家保险公司对其掌握的客户大数据表现出兴趣。
经过这些尝试,保险电商公司进行了更为有的放矢的后续操作,并初步尝到了“甜头”,不仅在营销环节,也在风控环节上。这些成果已包括,精准营销让广告投放的点击率提高360%以上,发现客户的赔付率与其芝麻信用呈现负相关关系,甚至建立骗保风险预估模型。
这仅是开始,新华电商副总裁杨亿认为,大数据将再造保险业价值链,涵盖从产品研发到营销、到理赔管理、再到资产管理的几乎全部环节。
数据与数据融合
互联网创新业务在业内处于领先地位的泰康人寿,对数据有明确定位,其董事长陈东升在2011年就提出“让数据产生红利”的方向。对于大数据,泰康总裁刘经纶认为主要有四大特征:首先是数据体量巨大,第二是数据类型繁多,第三是价值密度偏低,第四是处理的速度更快。
传统保险模式运作下,保险公司评估消费者的风险因素只有性别、年龄等简单维度,这也导致部分保险产品定价保守,且产品同质化。而在大数据时代,风险特征的描述数据极大丰富,保险公司可以通过大数据摸索更全面的风险特征,产品细分和个性化设计成为可能,并精细化风险管理和成本管控。
保险公司对于数据有本能的诉求,但简单获取数据违背商业原则,因此对数据的利用一般并不来自直接共享,而是与拥有用户大数据的互联网巨头公司之间进行数据合作,这在业内已经有了典型。
泰康人寿创新事业部业务发展部总经理毕海在今年6月份举行的第二届互联网大数据与精算创新论坛上表示,正在加深与腾讯、阿里等互联网巨头进行数据方面的合作。
近日也从新华保险的全资电商子公司新华世纪电子商务有限公司(下称“新华电商”)了解到,其正在与百度大数据合作;“大数据工场”是新华电商的三大定位之一。
同时,来自阿里金融保险事业部负责人的信息是,多家保险公司对其掌握的客户大数据表现出兴趣。
就数据合作而言,保险业与互联网公司,前者以客户获取、客户维护、客户风险评估为核心诉求,而后者的大数据在用户理解和用户洞察方面有核心优势,双方的业务结合点贯穿从营销到产品研发、再到理赔管理的全流程。
“引流”效果明显
在营销阶段,通过大数据方案,保险电商的交叉销售准确率得到提升。
通过与拥有海量客户社交数据及交易数据的互联网巨头进行大数据合作,泰康人寿的互联网创新产品正在朝精准定价的方向迈进,其从多维的甚至相对混乱的数据中进行筛查,决定保险产品是不是展现在用户面前,也就是实现精准营销。
做到这步很初级,互联网用户可能多少也都已有体会,经常在浏览网页时被推动自己关心或感兴趣的产品,但这点已很重要。
大数据+精准营销,已经被新华电商的一个案例证明,非常有效;至少在“引流”的作用上,精准营销有明显作用。毕竟,互联网业务关注的“流量”、“频率”、“价值的转换”三大要素中,“流量”为首。
已与百度大数据进行合作的新华电商,通过这种合作将保险客户的数据维度进一步丰富,让客户更立体,进一步确定出是谁在买保险,在买哪类保险,他们有什么特征。而事实也证明,这样的尝试已经初步体现出积极效益。
新华电商副总裁杨亿在日前召开的百度世界2015大会上介绍,其在和某大型保险公司的合作中,运用相关模型挖掘成功购买保险产品的高价值客户,分析高价值客户的客群特征,包括基本用户画像和上网行为等,并依此在全网扩充目标客群,最后做在线精准营销的广告投放。上线后的真实效果是,实验组广告点击率比对照组提升了361%。
杨亿称,这说明向同样规模的人群展示广告,经过大数据+精准营销,可以找到更多真正对保险感兴趣的目标客户,促成更多点击与转化。
发挥征信作用
大数据给保险电商的“甜头”没有止步于营销环节。对于以风控为核心竞争力的保险业来说,在理赔管理环节中,如何进一步发挥大数据价值也是重要课题。目前的尝试结果表明,在理赔管理中,大数据可以发挥保险征信的作用。
新华电商将百度对用户的大数据画像和新华保险的真实拒保数据进行融合,通过进行黑名单过滤、重大风险识别以及虚假信息挖掘,建立骗保风险预估模型,提升公司整体业务风险管理能力。
再比如,泰康既有的与阿里数据合作的一个结果表明,对客户的赔付率与其芝麻信用负相关。因此,具有明确数值的芝麻信用可以为其定义客户风险特征提供重要参考。
不仅如此,展望未来,杨亿称,大数据将再造保险价值链。
除了将对除了前述的营销阶段、理赔管理环节产生影响之外,其还将影响到产品研发和资产管理等重要环节。比如,在产品开发阶段,大数据助于预测出险概率、优化定价体系、并采集健康数据用于寿险价值链。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21