
使用Python解析JSON数据的基本方法
Python的json模块提供了一种很简单的方式来编码和解码JSON数据。 其中两个主要的函数是 json.dumps() 和 json.loads() , 要比其他序列化函数库如pickle的接口少得多。 下面演示如何将一个Python数据结构转换为JSON:
import json
data = {
'name' : 'ACME',
'shares' : 100,
'price' : 542.23
}
json_str = json.dumps(data)
下面演示如何将一个JSON编码的字符串转换回一个Python数据结构:
data = json.loads(json_str)
如果你要处理的是文件而不是字符串,你可以使用 json.dump() 和 json.load() 来编码和解码JSON数据。例如:
# Writing JSON data
with open('data.json', 'w') as f:
json.dump(data, f)
# Reading data back
with open('data.json', 'r') as f:
data = json.load(f)
用法示例:
相对于python解析XML来说,我还是比较喜欢json的格式返回,现在一般的api返回都会有json与XML格式的选择,json的解析起来个人觉得相对简单些
先看一个简单的豆瓣的图书查询的api返回
http://api.douban.com/v2/book/isbn/9787218087351
{"rating":{"max":10,"numRaters":79,"average":"9.1","min":0},"subtitle":"","author":["野夫"],"pubdate":"2013-9","tags":[{"count":313,"name":"野夫","title":"野夫"},{"count":151,"name":"散文随笔","title":"散文随笔"},{"count":83,"name":"身边的江湖","title":"身边的江湖"},{"count":82,"name":"土家野夫","title":"土家野夫"},{"count":70,"name":"散文","title":"散文"},{"count":44,"name":"中国文学","title":"中国文学"},{"count":43,"name":"随笔","title":"随笔"},{"count":38,"name":"中国现当代文学","title":"中国现当代文学"}],"origin_title":"","image":"http://img5.douban.com/mpic/s27008269.jpg","binding":"","translator":[],"catalog":"自序 让记忆抵抗n001 掌瓢黎爷n024 遗民老谭n039 乱世游击:表哥的故事n058 绑赴刑场的青春n076 风住尘香花已尽n083 “酷客”李斯n100 散材毛喻原n113 颓世华筵忆黄门n122 球球外传:n一个时代和一只小狗的际遇n141 童年的恐惧与仇恨n151 残忍教育n167 湖山一梦系平生n174 香格里拉散记n208 民国屐痕","pages":"256","images":{"small":"http://img5.douban.com/spic/s27008269.jpg","large":"http://img5.douban.com/lpic/s27008269.jpg","medium":"http://img5.douban.com/mpic/s27008269.jpg"},"alt":"http://book.douban.com/subject/25639223/","id":"25639223","publisher":"广东人民出版社","isbn10":"7218087353","isbn13":"9787218087351","title":"身边的江湖","url":"http://api.douban.com/v2/book/25639223","alt_title":"","author_intro":"郑世平,笔名野夫,网名土家野夫。毕业于武汉大学,曾当过警察、囚徒、书商。曾出版历史小说《父亲的战争》、散文集《江上的母亲》(获台北2010国际书展非虚构类图书大奖,是该奖项第一个大陆得主)、散文集《乡关何处》(被新浪网、凤凰网、新华网分别评为2012年年度好书)。","summary":"1.野夫书稿中被删减最少,最能体现作者观点、情感的作品。n2.文字凝练,具有极强的感染力。以一枝孤笔书写那些就在你我身边的大历史背景下普通人的生活变迁。n3. 柴静口中“一半像警察,一半像土匪”的野夫,以其特有的韵律表达世间的欢笑和悲苦。","price":"32元"}
看起来别提多乱了,现在我们将其格式进行简单的整理
{
rating: {
max: 10,
numRaters: 79,
average: "9.1",
min: 0
},
subtitle: "",
author: [
"野夫"
],
pubdate: "2013-9",
tags: [
{
count: 313,
name: "野夫",
title: "野夫"
},
{
count: 151,
name: "散文随笔",
title: "散文随笔"
},
{
count: 83,
name: "身边的江湖",
title: "身边的江湖"
},
{
count: 82,
name: "土家野夫",
title: "土家野夫"
},
{
count: 70,
name: "散文",
title: "散文"
},
{
count: 44,
name: "中国文学",
title: "中国文学"
},
{
count: 43,
name: "随笔",
title: "随笔"
},
{
count: 38,
name: "中国现当代文学",
title: "中国现当代文学"
}
],
origin_title: "",
image: "http://img5.douban.com/mpic/s27008269.jpg",
binding: "",
translator: [ ],
catalog: "自序 让记忆抵抗 001 掌瓢黎爷 024 遗民老谭 039 乱世游击:表哥的故事 058 绑赴刑场的青春 076 风住尘香花已尽 083 “酷客”李斯 100 散材毛喻原 113 颓世华筵忆黄门 122 球球外传: 一个时代和一只小狗的际遇 141 童年的恐惧与仇恨 151 残忍教育 167 湖山一梦系平生 174 香格里拉散记 208 民国屐痕",
pages: "256",
images: {
small: "http://img5.douban.com/spic/s27008269.jpg",
large: "http://img5.douban.com/lpic/s27008269.jpg",
medium: "http://img5.douban.com/mpic/s27008269.jpg"
},
alt: "http://book.douban.com/subject/25639223/",
id: "25639223",
publisher: "广东人民出版社",
isbn10: "7218087353",
isbn13: "9787218087351",
title: "身边的江湖",
url: "http://api.douban.com/v2/book/25639223",
alt_title: "",
author_intro: "郑世平,笔名野夫,网名土家野夫。毕业于武汉大学,曾当过警察、囚徒、书商。曾出版历史小说《父亲的战争》、散文集《江上的母亲》(获台北2010国际书展非虚构类图书大奖,是该奖项第一个大陆得主)、散文集《乡关何处》(被新浪网、凤凰网、新华网分别评为2012年年度好书)。",
summary: "1.野夫书稿中被删减最少,最能体现作者观点、情感的作品。 2.文字凝练,具有极强的感染力。以一枝孤笔书写那些就在你我身边的大历史背景下普通人的生活变迁。 3. 柴静口中“一半像警察,一半像土匪”的野夫,以其特有的韵律表达世间的欢笑和悲苦。",
price: "32元"
}
下面我们通过python来取出想要的信息,比如我们想要rating,images里的large和summary
import urllib2
import json
html = urllib2.urlopen(r'http://api.douban.com/v2/book/isbn/9787218087351')
hjson = json.loads(heml.read())
print hjson['rating']
print hjson['images']['large']
print hjson['summary']
是不是很简单,其实只要把返回的json格式嵌套搞清楚,json还是比较简单的
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29