
SPSS回归分析:有序回归
一、概念(分析-回归-有序)
使用序数回归可以在一组预测变量(可以是因子或协变量)上对多歧分序数响应的依赖性进行建模。序数回归的设计基于McCullagh (1980, 1998)的方法论;序数回归的过程在语法中称为PLUM。如:可以使用序数回归研究患者对药物剂量的反应。可能的反应可以分为无、轻微、适度或剧烈。轻微反应和适度反应之间的差别很难或不可能量化,并且这种差别是取决于感觉的。另外,轻微反应和适度反应之间的差别可能比适度反应和剧烈反应之间的差别更大或更小。
二、选项(分析-回归-有序-选项)
使用“选项”对话框可以调整迭代估计算法中所使用的参数,选择参数估计值的置信度并选择关联函数。
1、迭代。可以定制迭代算法。◎最大迭代次数。指定一个非负整数。如果指定为0,则过程会返回初始估计值。◎最大步骤对分。指定一个正整数。◎对数似然估计收敛。如果对数似然估计中的绝对或相对变化小于该值,则算法会停止。如果指定0,则不使用该条件。◎参数收敛。如果每个参数估计值中的绝对或相对变化小于该值,则算法会停止。如果指定0,则不使用该条件。
2、置信区间。指定一个大于等于0且小于100的值。
3、Delta。添加到零单元格频率的值。指定一个小于1的非负值。
4、奇异性容许误差。用于检查具有高度依赖性的预测变量。从选项列表中选择一个值。
5、链接函数。链接函数是累积概率的转换形式,可用于模型估计。下表总结了五个可用的链接函数。◎Logit log(î/ (1î) )均匀分布类别。◎互补双对数log( log(1î))类别越高可能性越大。◎负双对数log( log(î))类别越低可能性越大。◎ProbitÖ1(î)潜在变量为正态分布。◎Cauchit(逆Cauchy)tan(π(î0.5))潜在变量有许多个极值
三、序数回归输出(分析-回归-有序-输出)
“输出”对话框可以生成在浏览器中显示的表,并将变量保存到工作文件。
1、显示。为以下项目生成表:◎打印迭代历史记录。为所指定的打印迭代频率打印对数似然估计和参数估计值。始终打印第一个和最后一个迭代。◎拟合优度统计。Pearson和似然比卡方统计量。基于在变量列表中指定的分类计算这些统计量。◎摘要统计。Cox和Snell、Nagelkerke和McFadden R2统计量。◎参数估计。参数估计值、标准误和置信区间。◎参数估计的渐近相关性。参数估计相关系数的矩阵。◎参数估计的渐近协方差。参数估计协方差的矩阵。◎单元格信息。观察的和期望的频率和累积频率、频率和累积频率的Pearson残差、观察到的和期望的概率以及以协变量模式表示的观察到的和期望的每个响应类别的累积概率。请注意:对于具有许多协变量模式的模型(例如,具有连续协变量的模型),该选项可能会生成非常大的、很难处理的表。◎平行线检验。位置参数在多个因变量水平上都相等的假设检验。该检验只对仅定位模型可用
2、保存的变量。将以下变量保存到工作文件:◎估计响应概率。将因子/协变量模式分类成响应类别的模型估计概率。概率与响应类别的数量相等。◎预测类别。具有因子/协变量模式的最大估计概率的响应类别。◎预测类别概率。将因子/协变量分类成预测类别的估计概率。该概率也是因子/协变量模式的估计概率的最大值。◎实际类别概率。将因子/协变量分类成实际类别的估计概率。
3、打印对数似然性。控制对数似然估计的显示。◎包含多项式常数可以提供似然估计的完整值。若要在不包含该常数的乘积之间比较结果,可以选择将该常数排除。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15