
SPSS回归分析:有序回归
一、概念(分析-回归-有序)
使用序数回归可以在一组预测变量(可以是因子或协变量)上对多歧分序数响应的依赖性进行建模。序数回归的设计基于McCullagh (1980, 1998)的方法论;序数回归的过程在语法中称为PLUM。如:可以使用序数回归研究患者对药物剂量的反应。可能的反应可以分为无、轻微、适度或剧烈。轻微反应和适度反应之间的差别很难或不可能量化,并且这种差别是取决于感觉的。另外,轻微反应和适度反应之间的差别可能比适度反应和剧烈反应之间的差别更大或更小。
二、选项(分析-回归-有序-选项)
使用“选项”对话框可以调整迭代估计算法中所使用的参数,选择参数估计值的置信度并选择关联函数。
1、迭代。可以定制迭代算法。◎最大迭代次数。指定一个非负整数。如果指定为0,则过程会返回初始估计值。◎最大步骤对分。指定一个正整数。◎对数似然估计收敛。如果对数似然估计中的绝对或相对变化小于该值,则算法会停止。如果指定0,则不使用该条件。◎参数收敛。如果每个参数估计值中的绝对或相对变化小于该值,则算法会停止。如果指定0,则不使用该条件。
2、置信区间。指定一个大于等于0且小于100的值。
3、Delta。添加到零单元格频率的值。指定一个小于1的非负值。
4、奇异性容许误差。用于检查具有高度依赖性的预测变量。从选项列表中选择一个值。
5、链接函数。链接函数是累积概率的转换形式,可用于模型估计。下表总结了五个可用的链接函数。◎Logit log(î/ (1î) )均匀分布类别。◎互补双对数log( log(1î))类别越高可能性越大。◎负双对数log( log(î))类别越低可能性越大。◎ProbitÖ1(î)潜在变量为正态分布。◎Cauchit(逆Cauchy)tan(π(î0.5))潜在变量有许多个极值
三、序数回归输出(分析-回归-有序-输出)
“输出”对话框可以生成在浏览器中显示的表,并将变量保存到工作文件。
1、显示。为以下项目生成表:◎打印迭代历史记录。为所指定的打印迭代频率打印对数似然估计和参数估计值。始终打印第一个和最后一个迭代。◎拟合优度统计。Pearson和似然比卡方统计量。基于在变量列表中指定的分类计算这些统计量。◎摘要统计。Cox和Snell、Nagelkerke和McFadden R2统计量。◎参数估计。参数估计值、标准误和置信区间。◎参数估计的渐近相关性。参数估计相关系数的矩阵。◎参数估计的渐近协方差。参数估计协方差的矩阵。◎单元格信息。观察的和期望的频率和累积频率、频率和累积频率的Pearson残差、观察到的和期望的概率以及以协变量模式表示的观察到的和期望的每个响应类别的累积概率。请注意:对于具有许多协变量模式的模型(例如,具有连续协变量的模型),该选项可能会生成非常大的、很难处理的表。◎平行线检验。位置参数在多个因变量水平上都相等的假设检验。该检验只对仅定位模型可用
2、保存的变量。将以下变量保存到工作文件:◎估计响应概率。将因子/协变量模式分类成响应类别的模型估计概率。概率与响应类别的数量相等。◎预测类别。具有因子/协变量模式的最大估计概率的响应类别。◎预测类别概率。将因子/协变量分类成预测类别的估计概率。该概率也是因子/协变量模式的估计概率的最大值。◎实际类别概率。将因子/协变量分类成实际类别的估计概率。
3、打印对数似然性。控制对数似然估计的显示。◎包含多项式常数可以提供似然估计的完整值。若要在不包含该常数的乘积之间比较结果,可以选择将该常数排除。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18